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Abstract

For an infinite cardinal o, we say that a subset B of a space X is Ca-compact in X if for every
continuous function f: X — R, f [B] is a compact subset of R®. This concept slightly generalizes
the notion of a-pseudocomp duced by J.F. Kenni a space X is a-pseudocompact
if X is Cq-compact in itself. If @ = w, then we say C-compact instead of C,-compact and
w-pseudocompactness agrees with pseudocompactness. We generalize Tamano’s theorem on the
pseudocompactness of a product of two spaces as follows: let A C X and B C Y be such that
A is z-embedded in X. Then the following three conditions are equivalent: (1) A x B is Cqa-
compact in X x Y; (2) A and B are C,-compact in X and Y, respectively, and the projection
map 7: X x Y — X is a z4-map with respect to A x B and A; and (3) A and B are C,-compact
in X and Y, respectively, and the projection map #: X X Y — X is a strongly z,-map with
respect to A X B and A (the z,-maps and the strongly z,-maps are natural generalizations of the

z-maps and the strongly z-maps, respectively). The degree of Ca-comp of a C: pact
subset B of a space X is defined by: p(B, X) = oo if B is compact, and if B is not compact,
then p(B, X) = sup{a: B is Co-compact in X}. We estimate the degree of pseudocompactness
of locally compact p spaces, topological products and ) -products. We also establish
the relation between the pseudocompact degree and some other cardinal functions. In the
of uniform spaces, we show that if A is a bounded subset of a uniform space (X,U), then A is
C.-compact in X, where (X,) is the completion of (X,U) iff f(A) is a compact subset of
R® from every uniformly continuous function from X into R*; we ct ize the Cq p
subsets of topological groups; and we also prove that if {G:: i € I} is a set of topological groups
and A; is a Ca-compact subset of G, for all i € I, then His 1 Ai is a Co-compact subset of
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9. Introduction

All spaces are assumed to be Tychonoff. For a space i, Z(X) will denote the set
of zero-sets of X and for » € X, A'(x) is the set of 2il neighborhoods of z in X. If
f:X =Y is u continuous function, then 3(f): S(X} — 3(Y) denotes the Stone—Cech
extension of f. The Greek letters o, 4 and & will stand for infinite cardinal numbers, If
X is a set and « is a cardinal, then [X]$% = {4 € X: |A] < a}. If o is a cardinal
number, then o also stands for the discrete sprce of cardinality @. We know that 3(c)
can be identified with the set of all ultrafilters on o and its remainder o* = 3(a) \ @
with the set of all free ultrafilters on a. If v < a, then F(a) will stand for the filter
{A C a: jo\ Al < v}. Observe that if & < 7 € «, then Fi{a) C F,(a). For
an ordiral number 6, [0,6) will denote the space that consists of the underlying set
{i: p < 6} equipped with the order topology. The space {0,6 + 1) will be denoted
by [0,8]. The weight and the density of a space X are denoted by w(X) and d(X),
respectively. A space X is said to be a-Lindelof if every open cover of X contains
a subcover of cardinality not bigger than a. The Lindel6f number £(X) of a space
X is the smallest cardinal o such that X is «-Lindelof. For a space X, the set of
all real-valued continuous functions defined on X will be denoted by C{X) and, if
a is a cardinal, then C{X,R"”) will denote the set of all continuous functions from
X to R®. For a cardinal o, a subset G of a space X is called a G,-set if G is the
intersection of a-many open subsets of X (the G -sets are usually called Gs-sets). If A
is a subset of a space X and « is a cardinal, then the G, -closure of A in X is defined
by

Gaclx(A)={x e X: if Gisa Ga-setof X and z € G, then GN A # #}.

We simply write G,-cl(A) if ambiguity is impossible. We say that D is G,-dense
in X if Gu-cix(D) = X. Notice that if & < 7, then G,-clx(4) T Gq-clx(4)
for a subset A of a space X. If r € R, then r* is the point of R* with all coor-
dinates equal to r. If f: X — R“ is a continuous function, then for every £ < a
we write f¢ = mg o f, where 7w :R™ — R is the projection map on the £th coordi-
nate.

In [23], Hewitt studied the spaces X such that f{X] is a bounded subset of R for
each f € C{X): he called these spaces pseudocompact. Besides, he proved that the
pseudocompactness of a space X is equivalent to each one of the following statements:

(1) f[X] is a compact subset of R for each f € C(X);

(2) X is Gs-dense in 3(X);

(3) X is Gs-dense in every compactification of X.

Hewitt’s concept has been generalized, in different ways, by several topologists (see
[2.5-7,17.24.,26}]); in particular, a subset B of a space X is called bounded, in X, provided
that f[B] is a bounded subset of R for all f € C(X): the boundedness of a subset B
of a space X is equivalent to the condition that if I/ is a locally finite family of open
subsets of X such that each one of them meets B, then U is finite. It should be remarked
that a subset B of a space X is bounded it and only if for every cardinal o and for
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every f € C(X,R?), there is a set {[ag,be]: & < a} of closed intervals of R such that
FIB] € [ecalae, be. In paraliel, Isiwata [24] introduced and investigated the subsets B
of a space X with the property that inf{ f(z): z € B} > 0 for every f € C(X) which is
positive on B, equivalently, f{B] is compact for every f € C(X): this concept is named
hyperbounded by Buchwalter {7] and C-compact by the authors of [17]. We adopt the
terminology from [17].

In Section 1, we give the basic properties of C,-compact subsets and a generalization,
in the context of C-compactness, of Tamano’s theorem [34]: X x Y is pseudocompact
iff both X and Y are pseudocompact and the projection map 7x : X x ¥ — X is z-cle-
sed. The degree of C,-compactness of a C-compact subset is introduced and estimated
on locally compact, pseudocompact spaces in Section 2. In Section 3, we study the
Ca-compact subsets of the completion of a uniform space and of topological groups.
The degree of pseudocompactness of topological products and their y_-products are
studied in Section 4.

1. Cy-compact subsets
We start with a very natural generalization of C-compactness.

Definition 1.1. Let X be a space. A subset B of X is said to be Cq-compact in X if
fIB] is a compact subset of R for every f € C(X,R*).

It is not hard to see that a subset B of a space X is C-compact if and only if it is C,,-
compact in X, and if « and +y are cardinals with o < v, then every C,-compact subset is
a C,-compact subset. Thus, every C,,-compact subset is C-compact. If X is C,-compact
in itself (equivalently, in 8(X)), then we say that X is a-pseudocompact: this concept
was introduced by Kennison in [26]. So we have that every a-pseudocompact space is
pseudocompact for any cardinal number c. It is known that [0,w,) is a pseudocompact
space that is not w;-pseudocompact. Proposition 2.7 of [5), Lemma 2.4 of [17] and
Theorem 1 of [29] have the following C,-compact version (recall that a subset A of a
space X is said to be z-embedded in X if every zero-set of A is the restriction of some
zero-set of X).

Theorem 1.2. For a subset B of X, the following are equivalent:

(1) Bis Cy-compact in X,

(2) B is Cy-compact in 3(X);

(3) B is Ga-dense in Clﬂ(x)(B);

(4) B is Gy-dense in cl,(x)(B);

(5) B is Ga-dense in clgx)(B) for every compactification K(X) of X

(6} every cover of B of cardinality < « consisting of cozero sets of X has a finite
subcover,

(M) if {Ze: € < a} C 2(X) and BN (\ge; Ze # O for every finite subset I of ax.
then B0, Ze # 0
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(8) if 0" € clg(f[B]) for a continuous function f:X — R*, then 0" € f[B};
(9) f|B] is a closed subset of R* for all continuous functions f: X — R*;
(10) for every z-embedded subset S of X that contains B, B is C,-compact in S;
(11) for every cozero subset C of X that contains B, B is Cy-compact in C,
(12) for every continuous function f:X — Y with w(Y) < o, f|B] is a compact
subset of Y.

We then have that B is C-compact in the space X iff Gu-clg(x)(B) = clgx)(B).
In the next corollary we state two usefui condiiivns cquivalent to o pscudocompactness.
Before we state it we recall that a family of subsets of a set is said to have the -
intersection property if every subfamily of cardinality not bigger than o has nonempty
intersection.

Corollary 1.3. For a space X the following are equivalent:
(1) X is a-pseudocompact,
(2) every family of zero sets having the finite intersection property has the -
intersection property;
(3) for every function f:X — [0,1]%, claoa(f~'(z)) = (B(F)) (=) for all x €
[0, 1]=.

The equivalence (1) < (2) of the corollary just given was proved in [26]. The next
result extends Corollary 2.9 of [17].

Lemma 1.4. Let X be an a-pseudocompact space. If C = ¢ o Ze, where Zg € Z(X)
Jor each £ < o, then C is Cy-compact in X as well.

Now, we give a necessary condition to separate a particular subset of a space from a
C,-compact subset.

Lemma 1.5. Let X be a space. If A =z, Z¢, where Zg € Z(X) for each & < o, B
is Co-compact in X and AN B = 0, then A and B are completely separated.

Preof. Foreach§ < o, choose a continuous function f¢: X — R such that £71{0) = Ze.
Let f: X — R* be the evaluation map of the set {fz: £ < a}. Then f(2) = (fe(2))e<a
for z € X. Then we have that A = f ~!(0"). Since B is C,-compact in X and disjoint
from A, f{B] is a compact subset of R* which does not contain 0%, Hence, we can find
a continuous function g : R* — R such that g(0*) = 0 and g[f[B]] = {1}. Then, go f
witnesses that A and B arc completely separated. O

Definition 1.6. A continuous surjection f: X — V is said to be a zo-map with respect
to AC X and B CY if flA] = B and f]N., Z:NA] is a closed subset of B provided
that Z; € Z(X) for each £ < . In addition, if f[Ne , Ze N A] = Meo, Ke. where
K¢ € Z(B) for each £ < a, then we say that f is a strongly z,-map with respect to A
and B.
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N. Noble [28] studied the projections 7: X x ¥ — X which are z-maps with respect
to A x B and A, where A C X and B C Y, and called them relatively z-closed. If
a=w, X = Aand B=Y, then we simply say z-map and strongly z-map: the z-maps
were introduced by Frolik in [16] and the strongly 2-maps were studied in [19]. Tamano’s
theorem (see [34], [10, Theorem 4.1]) on pseudocompactness of a product of two spaces
has been generalized by Noble {28] as follows: if A C X with a nonisolated point and
B CY,then Ax B is bounded in X xY if and only if the projectionmap 7 : X xY —» X
is a z-map with respect to A x B and A, A is bounded in X and B is bounded in Y,
Now, we shall extend Tamano’s theorem in the context of C,-compactness. First, we
prove some preliminary lemmas.

Lemma 1.7. Let AC X and BC Y. If A x B is Co-compact in X x Y, then
clx(ﬂ'[ M Zen(Ax B)]) =n[ﬂ Ze N (A x B)] C A,
£<a f<a
where w: X x Y — X is the projection map and Z¢ € Z(X x Y) for each & < o that
is, T is @ zo-map with respect to A x B and A.
Proof. Put Z =, Z¢, where Z; € Z(X x Y) for each £ < c. Suppose that
z€clx(r[ZN(Ax B)])\r[Zn(4x B)].

We have that ({x} x BYynN Z = 0 and since {z} x B is C,-compact in X x Y, by
Lemma 1.5, there is a continuous function f: X x Y — {0, 1] such that f((zx,b)) = 1
for all b € B and Z C f'(0). Arguing as in the proof of Theorem 4.1((a) < (b)) of
[10], we obtain a contradiction. O

In the next three lemmas, we generalize a result that is included in the proof of 3.4(a)
and 3.5 of [19]. In order to prove them we shall slightly modify the arguments given in
the original proofs from [19].

Lemma 1.8. If f: X — Y is a z-map with respect to AC X and B CY such that its
restriction f: A — B is an open map, Z € Z(X) and C is a cozero set of X such that
Z C C, then there is K € Z(B) for whick f[ZNA) C K C f[CN A}
Proof. Let h: X — [0, 1] be a continuous function such that

Z=h"'(0) and X\C=h"'(1).
Set D = {r € (0, 1): r is dyadic}. Now, for each » € D we put

U, = f[p='([0,r)) n A].

Then, U, is an open subset of A and A = |J,.; Us. Since f is a z-map with respect to
A and B, flh='([0,7]) N A] is a closed subset of B and hence

clag(Ur) € R ([0,r) N 4] C UL
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whenever r, s € D and v < s. By Lemma 3.12 of [20], g(y) = inf{r € D: y € U, } for
y € B defines a continuous function from B to [0, 1]. If K = g~'(0), then K € Z(B)
and f[ZNAJCK C f[CNA]. O

Lemma 1.9. Let f: X — Y be a z-map with respect to AC X and B C Y such thar
its restriction f: A — B is an open map and f~'(b) N A is Co-compact in X for all
be B.Ifh: X — [0,1)* is a continuous function and 0 < n < w, then there is a set
{K¢: € < a} C Z(B) such that

fitena ¢ N Ke< f[n (fo, %)“) n4).

{<a

Proof. We proceed by transfinite induction on . Lemma 1.8 is the case when o = w.
Assume that the conclusion of the lemma holds for all cardinals 4 < « and for each
0<m < w Let h: X — [0,1]* be a continuous function and 0 < n» < w. For each
ordinal number p < a, we set h(u) = ju o h: X — [0,1]%, where j, :[0,1]* — [0, 1]*
is the projection map. By induction hypothesis, for each p < a there is a set

{Kt: €< p}eZ(B)

such that
oo e o (k] oo
Hence,
10700 A = 1 (Y @) 0 4] € ) S0
p<a n<a
gﬂoﬂ EQK: g‘gf[h(u)"([o, ﬁ%] )nA].

We claim that

o (bt o -y (ot )

In fact, let
ve uf]ﬂf[h(p)“([ﬂ, ﬁ—l]") nA].

Then, we have that £~'(y) N AN A(E) ({0, 1/(n + 1)]#) £ O for each p < a. Since
Rh()=1{[0,1/(n+1)]") € A(p) ([0, 1 /(n+1)]*) whenever p < v < aand f~'(y)NA
is C-compact in X, by Theorem 1.2(7), we have that

ranan e (fo—s]) #0

p<a
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and hence

ver ror (o] ) na) =4 (] )
Therefore,

s e g (o] ) o

u<la E<p n<o

e e

Lemma 1.30. If f: X — Y is a z-map with respect to A C X and B C Y such that
its restriction f:A — B is an open map and f~'(b) N A is Co-compact in X for all
b € B, then [ is a strongly z,-map with respect to A and B.

Proof. Let {Z;: £ < a} C Z(X). Fix a continuous function h: X — [0, 1]* such that
Ne<o Zc = h7'(0%). For each ordinal number i < o, we put h(p) = juoh: X — [0, 1%,
where Jut0,1]* — [0,1]# is the projection map. Notice that ), h(p)~'(0°*) =

l(0') According to Lemma 1.9, for each ¢ < o and for each 0 < n < w we may
find {K} ;2 £ < p} C Z(B) such that

Sl @) n Al € (VKo< £la([o.2)") 4],

£<n
Hence,
st@na=i[ (1 onnals N NRe
p<a 0<n<w <o E<p
N Nl (fo.5)) 4]
0<n<w p<a

To show that
Mernd= N N N&Ee= N N (o7)) 04
O<n<w pa £<p <n<w pla
we argue as in the procf of Lemma 1.9. O

A C,-compactness version of Tamano’s theorem is the following.

Theorem 1.11. Let AC X and BC Y. If A is u z-embedded in X, then the following
are equivalent:
(1) Ax B is Cy-compactin X x Y,
(2) A and B are Co-compact in X and Y, respectively, and the projection map
7: X xY ~» X is a zo-map with respect to A x B and A4;
(3) A and B are Cy-compact in X and Y, respectively, and the projection map
m: X x Y — X is a strongly z2o-map with respect to A x B and A.
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Proof. (1) = (2). This is Lemma 1.7.

(2) => (3) This follows from Lemma 1.10.

(3) = (1) We shall verify clause (7) of Theorem 1.2. Let {Z;: £ < o} C Z(X) such
that (A x B)N(eep Z¢ # O for each finite subset 1 of o. By assumption, 7|, Ze N
(A x B)] = (¢cq Re. where Re € Z(A) for each § < a. Now, for each £ < o, we can
find L¢ € Z(X) for which AN Lg = Re. It is then evident that every finite subfamily
of {Lg: £ < a} meets A and since A is Cy-compact in X,

An[Le= ﬂR£=7r[ﬂZ£m(AxB)] #0.

3 {<a <a
Hence, Ax BN, Zc #8. O

It is pointed out in [3, Corollary 2.8] that a z-embedded subset B of a space X is
C-compact in X iff B is pseudocompact. It follows from necessity in Noble’s theo-
rem quoted above and Theorem 1.11 that:

Corollary 1.12. Let AC X and B C Y. If A is z-embedded in X, then the following
are equivalent:

(1) Ax B is C-compactin X x Y

(2) Ax B is bounded in X xY and A and B are C-compact in X and 'Y, respectively.

It then follows from Corollary 1.12 that if X is a pseudocompact space, then X x B
is bounded in X x Y for every C-compact subset B of a space Y if and only if X x B
is C-compact in X x Y for every C-compact subset B of Y. This improves Corollary
5.6 of [18].

Question 1.13. If A and B are Ci-compact in X and Y, respectively, and the projection
map w: X xY — X is a strongly zo-map with respect to A x B and A, must A x B
be Cy-compact in X x Y?

2. The degree of pseudocompactness

We know that any space X can be embedded in R*(X), Hence, a subset B of a space
X is compact if and only if B is C,,(x)-compact. This suggests that one should study the
following cardinal function that, in particular, estimates the degree of pseudocompactness
of a pseudocompact space.

Definition 2.1, Let X be a space. If B is a C-compact subset of X, then we define:

n5.3) = {

50 if B is compact,
sup{a: B is C,-compact in X} if B is not compact.

If X is pseudocompact, then we simply write p(X) instead of p(X, X). It should be no-
ticed that if I3 is C-compact in X, then p(B, X) > w. Since every space X can be embed-
ded in R¥X), we must have that p(X ) < ¢(X) < w(X). Hence, if X is pseudocompact
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and noncompact, then X cannot be ¢(X)-pseudocompact. If X is a noncompact, pseudo-
compact space and p(X) is a successor cardinal, then X is p(X)-pseudocompact. Thus,
a space X is compact iff X is £(X)-psendocompactX iff X is w(X)-pseudocompact.
By Theorem 1.2, we have that p(X) = p(X,3(X)) for every pseudocompact space
X. It follows from the definition that if X is a pseudocompact space, then p(X) <
p(X, B(X)) for any compactification B(X ) of X. By Theorem 1.2, we have that p(X) =
sup{a: Ga-clg x)(X) = B(X)} for every noncompact, pseudocompact space X.

A space X is called initially a-compact, for a cardinal o, if every open cover U
of X with || < o has a finite subcover (this class of spaces was introduced by
Y.M. Smirnov [32]). We have that a space X is initially a-compact iff every subset
A of X of cardinality not bigger than « has a complete accumulation point in X (a
proof of this fact is available in [33]). We omit the proof of the following easy resuit.

Theorem 2.2. If X is initially a-compact, then o € p(X).

We notice that p({0,w;)) = w and [0,w; ) is initially w-compact and if p € w* satisfies
that x(p, B(w)) = 2 (these ultrafilters exist in ZFC, see [8, Theorem 2.7}), then 3(w) \
{p} is y-pseudocompact for every -y < 2¢ and it is not initially 2*-compact.

If X is a locally compact space, we denote by A(X) the one-point compactification
of X by the point oo (in the sense of Alexandroff). Then, for every uncountable car-
dinal number o we have that a is C-compact in A(e), o is not C,-compact in A(a),
plat, Alet)) = o and if @ is a limit cardinal, then p(a, A(e)) = a. It is pointed
out in Corollaries 3.8 and 3.9 of [17] that every locally compact, Lindelsf space X
that is C-compact in A(X') must be compact, and every locally compact, non-Lindelof
space X is C-compact in A(X). Hence, p(X, A(X)) < £(X) for every locally compact,
non-Lindelof space X. For locally compact spaces, we have the next rexults.

Lemma 2.3. Ler X be a locally compact, non-Lindelisf space. Then p(X, A(X)) exists,
X is Cy-compact in A(X) for every v < €(X) and X cannot be Cyxy-compact in
A(X).

Proof. Since X is not Lindelof, we have that £(X) > w. Let v < £(X). If X is not
C,-compact in A(X), then {co} = (., V¢. where Ve is an open subset of A(X) for
each § < %, by Theorem 1.2. Hence, X = U¢.,(A(X)\ V) and this implies that
£(X) < . but this is a contradiction, It is evident that X cannot be Cy(x)-compact in
A(X). O

Corollary 2.4, Let X be a locally compact space and let o be a cardinal. The following
are equivalent:

MUX) <

(2) either X is compact or X is not Co-compact in A(X).

Corollary 2.5. Ler X be a locally compact, non-Lindeldf space and let p( X, A(X)) = a.
The following assertions hold:
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(1) (X)) = a* if and only if X is Cy-compact in A(X).
(2) ¢(X) = a if and only if X is not Cy-compact in A(X).

We remind the reader that a space X is said to be almost-compact if |3(X)\ X| < L.
We have that if X is an almost-compact space, then X is lucally compact, all its pow-
ers are pseudocompact and p(X) = p(X, A(X)). We shall give an example of a locally
compact space Z such that p(Z) = p(Z, A{Z)) and Z is not almost-compact (see remark
after Corollary 2.12). It is well known that if « is a cardinal and cf(a) > w, then [0, @)
is a countably compact space and 3([0,0)) = [0,a]; that is, [0,) is almost-compact.
We also have that £([0, a)) = cf(a) for every cardinal a. As a consequence of this fact
and Lemma 2.3, we have:

Theorem 2.6. Let « be a cardinal with cf(a) > w. Then [0, ) is y-pseudocompact for
all w < v < cf(a) and it is not cf(a)-pseudocompact.

Corollary 2.7. For every cardinal o, we have that p([0,a™)) = o

Proof. By Theorem 2.6, we have that [0, a™) is a-pseudocompact and since w([0, a*)) =
o, we must have that p([0,0%)) =a. O

Corollary 2.8. If v and « are cardinals with ¥ < «, then [0,7%) is y-pseudocompact
and is not a-pseudocompact.

An example which separates the class of C,-compact subsets for different cardinal
numbers a in the context of topological groups can be found as follows: let X be a
space. We denote by F(X) the free topological group generated by X (see [9, 2.3 and
9.20]). It is known that X is a closed C-embedded subspace of F'(X). Let o and v
be cardinal numbers with & < «. Let X be an a-pseudocompact space which is not
y-pseudocompact. Since X is a closed C-embedded subset of F(X), X is a closed
C,-compact subset of F(X) which is not C,-compact.

Coroilary 2.9. For every limit cardinal number o with cf(a) > w, we have that
p([0, @) = cf(e).
Proof. We know that 3([0,a)) = [0, a]. According to Theorem 2.6, [0,a) cannot be

Cet(ay-compuct in [0, a] and hence p{[0, a]) < cf(e). It then follows from Theorem 2.6
that p([0,a)) = cf(a). O

The proof of the next corollary is left to the reader.
Corollary 2.10. Let a be a cardinal with cf(a) > w. Then, we have:

(1) @ =% for some cardinal v if and only if [0, @) is p{[0, a))-pseudocompact;
(2) @ is weakly-inaccessible if and only if p([0,a)) = o.
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We turn now to consider the next cardinal function which is somehow related to that
of Definition 2.1 and is useful in the study of the cardinal function p in the class of
locally compact spaces.

Definition 2.11. Let X be a space. If B is a subset of X, then we define:

(B, X) = 00 if B is compact,
PRAEAN= min{a: B is not C,-compact in X} if B is not compact.

Observe that a subset A of a space X is not C-compact in X if and only if p*(A4, X) =
w, and if B is C-compact in X, then p(B,X) < p*(B.X) < p(B.X)".H X isa
space, then we write p*(X) = p*(X, X) = p*(X, 3(X)). if f: X > Y is a continuous
surjection, then p*(A,X) < p*(f(A),Y) for every A C X such that f(A) is not
compact. We also have that if X is any noncompact space, then p*(X) exists and
p*(X) € p*(X, B(X)) for every compactification B(X) of X.

Corollary 2.12. If X is a locally compact, noncompact space, then
p* (X, A(X)) = £(X).

Proof. If X is Lindeldf then, by Corollary 3.8 of [17], we have that X is not C-compact
in A(X) and so p*(X) = w = #(X). Now assume that X is not Lindelof. Since X
is G,-dense in A(X) for all ¥ < ¢(X), ¢(X) € p*(X, A(X)) and, by Lemma 2.3,
{X)=p*(X,A(X)). D

For 1 < n < m < w, we have that Z = [0,w,) ® [0,ws,) is a locally compact,
noncompact space that satisfies p(Z) = w,_y, p*(Z) = w, and §Z) = wp. ¥ Z =
[0,w,) B [0,wy), for n € w, then Z is a locally compact, non-almost-compact space with
n(2) = p(Z, A(Z)).

A space X that is C-compact in some of its compactifications is called weakly-pseudo-
compact; several properties of these spaces are investigated in [17]. It is pointed out in
Corollary 2.9 of [17] that a locally compact space X is weakly-pseudocompact if and
only if X is either compact or it is not Lindelsf.

Theorem 2.13. Let X be a noncompact spcce. Then
() p™(X, B(X)) < €(X) for every compactification B(X) of X
(2) If X is u weakly-pseudocompact space, then there is a compactification B(X) of
X for which

p(X. B(X)) < p"(X, B(X)) < 4X).

Proof. (1) Let B(X) be a compactification of X. Fix z € B(X)\ X, then we may find
a Gy x)-subset H such that z € H and H N X = §. Hence, X cannot be Gy(x)-dense
in B(X and so p*(X, B(X)) < &{X).

(2) Let B(X) be a compactification of X witnessing that X is weakly-pseudocompact.
By clause (1), we have that p(X, B(X)) € p* (X, B(X)) < {X). O
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Observe that p* (o) = w and {(a) = rx for all cardinal numbers .

Theorem 2.14. For a locally compact, noncompact space X, the following are equiva-
lent:

() p"(X)=€X);

(2) p* (X, B(X)) = £(X) for all compactification B(X) of X.

Proof. (1) = (2). Let B(X) be a compactification of X. Then we have that
HX) = p"(X) < p"(X. B(X)) < p" (X, A(X)) = €(X),

the last equality follows from Corollary 2.12.
(2) = (1). This is evident. O

Every almost-compact space satisfies the conclusion of Theorem 2.14. The space of
the real numbers R is an example of a locally compact, non-almost-compact space with
pH(R) ={(R) = w.

A better upper bound for the degrec of pseudocompactness is the realcompactness
number of a spuce X which was introduced in [1] and it can be defined as follows: the
realcompactness number of a space X is

(X)) = min{a > w: X = Ga=clyx)(X)}.

We should remark that a space X is compact iff X is g(X)-pseudocompact iff X is
a-pseudocompact and ¢(X) 2 a.

Theorem 2.15. For every noncompact space X, we have

PHX) < q(X) < HX).

Hence, if X is a noncompact, pseudocompact space, then p(X) € ¢(X). If X is
almost-compact and noncompact, then p*(X)} = ¢(X). If X is not realcompact and
not pseudocompact, then p*(X) = w < ¢(X). For an arbitrary cardinal a, if X is
pseudocompact and not a-pseudocompact, and Y is a-pseudocompact and noncompact,
then Z = X &Y is a pseudocompact space such that p*(Z) € a < ¢(Z).

The Isbell-Mréwka spaces are defined by means of an almost disjoint (AD) family
of infinite subsets of w as follows: if A is an AD family, then the 1sbell-Mréwka space
¥(.A) consists of the underlying set .4 U w, the points of w are isolated while if 2 € A,
a basic neighborhood of = has the form {z} U A where A is a cofinite subset of z. It
is shown in [20, 5.1(5)}, that ¥(.A) is pseudocompact iff A is a maximal almost disjoint
(MAD) family. It is eusy to prove that if A is a MAD family, then £(¥(A)) = |A|
and hence p(¥(A)) < p*(#(A)) < |A|. Hence, ¥(A) is never |.A|-pseudocompuct and
if we assume CH, then p(¥(A)) = w for every MAD family .,A. We know that there
are MAD families A for which #(A)} has only one compacitification (a construction of
this kind of MAD families is available in [4,27,35]). If 3(¥(A)) = A(¥(A) then, by
Corollary 2.12, p*(¥(A)) = ¢(¥(A)) = |A| and hence ¥{A) is a-pseudocompact for
every w € a < |A|.
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3. Uniform spaces and topological groups

In this section, we will study the behavior of the product of C,-compact subsets of
topological groups. Our principal tool is the theory of uniform spaces. All the uniformities
considered in this section are compatible. We shall denote the completion of a uniform
space (X,U) by (X,if) (see [15, Theorem 8.3.12]). It is known that if a space X is
topologically complete, then clx (A) is compact for every bounded subset A of X.

Theorem 3.1. Let A be a bounded subset of a uniform space (X,U) and let ()? i) be
the completion of (X,U). The following assertions are equivalent:
(V) Ais Cy-compact in X
(2) A is C,-compact in cl)?(A).
() A is Gy-dense in cl;;(A).
@ SlA] is a compact subset of R for every uniformly continuous function from X
into R,

Proof. (1) = (2). Let f:clg(A) - R* beAa continuous function such that f[A] is
not compact. Since clg A is compact in (X,U), there exists a continuous function
g: X — R" such that g4 = f]4 and so A is not C,-compact in X.

(2) = (3). Suppose that there exists a set {Zg: £ < a} of zero sets in ¢l(A) such
that N, ZeN A = 0 with (e, Z¢ # 0. Let f¢ be a continuous function from cl;(A4)
into R such that Z¢ = f 1(0), for each £ < c. Consider the function f:cl g(4) - R”
defined by f(z) = {fe (a:))£<“ for every z € clg(A). Pick y € e, Ze. Then

f) € flelg(A)]\ fla).

Thus, f[4] is not compact. R

(3) = (4). Let f be a uniformly continuous function from X into R*. Let f be the
uniform continuous extension of f to X, Pick y € f[cl;E(A)} \ flA]. Since every point
in R* is a G4-point, f~'(y)Nel 2(A) is a Go-subset in cl;(A) which does not meet A.

@) = (). Let f be a continuous function from X into R*. We have that the function
Fla~(ay is uniformly continuous with respect to the uniform structure induced by U on
clx(A), because cl3;(A) is compact. By Katiov's thcoiem [25] (also see [15, 8.5.6(b)])
there exists a uniformly continuous function g from X into R* such that glo.(a) =
f |c,;( 4)- Since g|x is uniformly continuous, g[A} = f[A] is compact. O ¥

The above theorem shows that it is not necessary to consider all continuous real-valued
functions to study some properties of C,,-compact subsets in uniform complete spaces.
Actually, it suffices to consider functions that are uniformly continuous. On the other
hand, let « be an uncountable cardinal and

U = {A: Ais a finite cover of a, every element of A is either finite or cofinite}.

Then, « is not C-compact in the uniform space (a,if) and every uniformly continuous
Ji(e,U) — R sends @ onto a compact subset of R. The referee communicated to the
authors the following example due to A.W. Hager.
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Example 3.2. An example of a bounded, non-C-compact subset B of a uniform space
{X,U) such that B is a C-compact subset of (f ,ﬁ) is the following:

Let X = [0,w)) x B(w)) U {w} x wy, and let B = {w} x wy € X. Since X is
pseudocompact, all of its subsets (in particular, B) are bounded in X. To see that B is
not C-compact in 3(X) = [0,un] x B(w)) (hence, B is not C'-compact in X) let f be
a continuous function on B(w,) with flw;] not compact, and define F: 3(X) — R by
F(z,y) = f(z) forall {z,y) € B(X): then F' |x is continuous on X, and F[B} = Fw,]
is not compact. We note that X is locally compact, Let I/ be the uniformity on X induced
from its one-point compactification. Then, we have that every real-valued function f
uniformly continuous on X with respect to 2 has a continuous extension F o the one-
point compactification A(X) = X U{cox}. The one-point compactification A(B) of B
is Bu{cop} = BU{ocox}. so f[B] — flB] is compact since B is C-compact in A(B).

Lemma 1.3 of [11] can be generalized as follows:

Lemma 3.3. Let o be a cardinal aund let A; be a subset of a nonempty space X; for
i € I. Then A; is Ga-dense in X;, for all i € I if and only if [1,c; A is Go-dense in
Hzel X

The following two corollaries are immediate consequences of Theorem 3.1 and
Lemma 3.3.

Corollary 3.4. Let {(X;,U;): i € I} be a set of complete uniform spaces. Let B; be
a Cq-compact subset of X; for each i € I. Then [],c; Bi is a Co-compact subset of
Hie 1 Xi. In particulay, the product of Co-compact subsets of topologically complete
spaces X; is again Cy-compact in the product of the spaces X;.

Corollary 3.5, Let {X;: i € I} be a ser of topological spaces such that

ﬂ(HXi) =[Isx.
i€l ief

Then, [,c; Bi is a Co-compact subset of [1,c; X; whenever B; is a Co-compact subset
of X; for every i e L.

In [21], L. Glicksberg also gave the conditions for the pseudocompactness of a praduct
in terms of countable subproducts: a product of nonempty spaces is pseudocompact iff
each countable subproduct is pseudocompact. It is then natural to ask whether there is the
Co-compact version of Glicksberg’s result. In the following theorem, we give a partial
answer to this question. First, we state a lemma that was proved by W.W. Comfort and
S. Negrepontis [12, Theorem 10.14].

Lemma 3.6. Let « be a cardinal, let { X;: i € I} be a set of spaces with each d(X;) € «
and let f:[1,c; Xi = Y be a continuous function with Y a space such that w(Y) € .
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Then, there is a subset J of I and a continuous function g:{l;c; X; ~ Y such that
[/l < aand gomy = f, where 7y : [[sc; Xi = [lic; X is the projection map.

Theorem 3.7. Let {X;: i € I} be a set of spaces and let B; C X; for everyi < I If v
and a are cardinal numbers such that @ < -y and sup{d(X;): i € I} < . then [};o; B;
is Co-compact in [1,c; X: if and only if [[,c; B is Co-compact in H,-E 4 X for every
J ST with 10| €.

Proof. Let 4 and o be cardinal numbers with @ < v and sup{d(X;): i € I} < .
We will only prove the sufficiency. Suppose that [],. ; B: is Ca-compact in [, ; X;
for every J C I with |J]| < . Let f:]];c; Xi — R™ be a continuous function. Since
w(R*) = o < ~. by Lemma 3.6, there is a subset K of I and a continuous funiction

g:[] xi o R®

€K

such that |K| < v and go mg = f, where

TK: H Xi — H Xi

€K €K

is the projection map. By assumption,

e -1 [

i€l i€k il
is compact. This shows that [],c; B; is Ca-compactin [I,., X;. O

We shall now study the C,-compact subsets of topological groups. The next theorem
generalizes Theorem 2 of [22). Let G be a topological group, we denote by UL (re-
spectively Uy, r) the left (respectively, two-sided) uniform structure on G. Let (G,Urz)
denote the uniform completion of the uniform space (G,ULg). It is known [30, Theo-
rem 10.12(c)] that G is a topological group.

Theorem 3.8. Let B be a bounded subset of a topological group G. The following
assertions are equivalent:
(1) B is C,-compact in G;
(2) B is Gu-dense in cly B, with (Y,V) a uniform space such that G C Y and
Vi = Uy;
(3) B is Gy-dense in clz(B);
(4) for every uniform continuous function f from (G,ULg) into R®, f|B)] is compaci.

Proof. The proof of the equivalences among (1), {2) and (3} is similar to that of Theo-
rem 2 of [22].

(3) = (4). This insplication follows from (3} = (4) of Theorem 3.1.

(4) = (1). Suppose there exists f:G — R* such that f[B] is not compact. By
[36, Corollary 2.29], f|g is uniformly continuous with respect to the uniform stmucture
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induced by U,z on B. So, we can extend f to a continuous function to clg(B) which
is the completion of B with respect to Uyx. By Katsiov's theorem [25], there exists a
uniformly continuous function g from G into R such that g|g = f|p. Thus, g{A] is not
compact, a contradiction. O

We shall slightly gencralize Corollary 3 of (22] and Theorem 1.4 of [13]. We need
some notauon. For a set {G;: 7 € I} of topological groups, we denote by U} ;, the two-
sided uniform structure on G; for all ¢ € I. If G = [],.; G: and Uy g is the two-sided
uniformity on G, it is known that Urr = [],; Mi r [30, Proposition 3.35].

Corollary 3.9. Let {G;: i € I} be a set of topological groups and let A; be a Cq-
compact subset of G; for all i € 1. Then [],c; Ai is a Co-compuct subset of [],c; G

We end this section with an example. If G is a totally bounded, nonpseudocompact
topological group (for the definition of totally bounded group see [9, Section 1]), then
every real-valued function that is uniformly continuous with respect to the left uniformity
Uy, on G is bounded on G (see [9, 1.13]), and there is a continuous real-valued function
that is not bounded on G. The maximal totally bounded topological group topology on
an infinite Abelian group is not pseudocompact (for a proof of this fact we refer the
reader to [9, 9.13]D.

4. Topological products and ¥ -products

We siart with an estimation of the degree of pseudocompactness of a product of a set
of topological spaces.

Theorem 4.1. Let A; be a subset of X; for i € I. Then,
p'(HAi,HXi) < min{p*(Ai, X)) i eI}
el il
Proof. Fix j € L. Since A; is not Cpe(a,,x,)-compact, we have that [],, 4; is not
Cp-(a,.x;)-compact in [];; Xi, and bhence p*([Tic; i, [T, Xi) < p*(45,X;). O
We remark that if X is a pseudocompact space with X x X is not pseudocompact,

then p*(X) > w and p*(X x X) = w (for an example of such a space see [20]).

Theorem 4.2. Ler A; be a C-compact subser of Xy, for each i € I. If [l;c; Ai is
C-compact in [];c; Xi, then,

p(HA.v,HXi) < min {p(A;, X3): 1 € 1}
i€l i€l

Proof. Let o = p([Tic; Ais Tlier X:) and v = min{p(A;, X;): © € I}. Then, there is
k € I such that v = p(Ayg, Xi). Suppose that v < a. If there is a cardinal 5 such that
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v < K < a, then [[;o; A: is Gx-dense in d]_i.erxl (IT;cs Ai). Hence, by Lemma 3.3,
Ay, is G-dense in clgx,)(Ax) and so & <+, which is a contradiction. Thus, & = 47.
Then, we have that [],.; 4; is Co-compact in [[,., X:, By arguing as the previous
paragraph, we obtain that Ay is C-compact in Xy, but this is impossible. Therefore,
ag<y O

We do not know whether the equality must hold in Theorem 4.2. Next, we generalize
Corollary 2.12 of {17]: the proof foliows from Lemma 3.3 and Glicksberg’s theorem [21]
(see [37, 8.25]).

Theorem 4.3. Ler A; be a C-compact subset of X;, for each i € L If [],., X; is
pseudocompact, then,

p(IIAi,HXi) = min {p(A;, X;): i € I}.

iel il

Example 4.4, Let X = [0,w) x [0,uw). Then, X is a locally compact space that is not
almost-compact and p(X} = p(X, A(X)). If  is a regular cardinal and w; < o, then
p([0,u1) X [0,0)) = w and £([0,u) % [0, )) = 0.

We now estimate the cardinal function p on some subspaces of a topological product
of a set of spaces. The following theorem plays a very important role in studying the
function p on subspaces of products (it is taken from [3]). To state the theorem we need
the following terminology: let X be a space, hd(X) and x(X) stand for the hereditary
density and the character of X, respectively; a set V of open subsets of X is a 7-base
of a continuous function f: X — Y 1t the point z € X if for every V € N(f(z)),
zec({U e V: fIU)CV});

ax(f,x) =min{|V|: Vis a v-base of f at z};

and the m-character of f is mx(f) = sup{mx(f,z): £ € X}. Notice that hd(X) < w(X)
and if f: X — Y is continuous, then 7x(f) < x(¥). If X = [[,.; X; and K C I, then
nx :[lies Xi = [lex Xi will denote the projection mapping.

Theorem 4.5 (Arkhangel’'skii factorization theorem {3]). Ler X = er 1 Xi and let A
be a dense subset of X = [[;c; Xu If f: A — Y is a continuous function and v is a
cardinal number such that
) hd{rx(A)) < y forall K € (IS
(2) there is a dense subset D of A such that wx(f,z) < =y for every x € D, then there
is L & [IS7 and a continuous function ¢:7(A) — Y for which ¢oxy, = f.

Corollary 4.6. Let X = [, Xi such that w(X;) < y < || foralli€ LIf Aisu
dense subset of X and f: A — Y is a continuous function with x(Y') < +. then there are
L C I such that |L| < « and a continuous function ¢: 7y (A) = Y such that porny = f.
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Proof. For each K C I with (K| < v, we have that w([],cx X:) < 7 and hence,
hd(7g (A)) < 7. The conclusion now follows from the fact that x(Y) < v, mx(f) < v
and Factorization Theorem 4.5. O

From Corollary 4.6, we obtain the next generalization of Lemma 4 from [14]. For
o> w, we say that Y C [T, Xi is a-dense if 7;(Y) = [];o; X; for all J € [I]S*.

Lemma 4.7. Let & be a cardinal and let X = [],.; X; be a product of compact spaces
of weight not bigger than o with a < |I|. Then, for a dense subset Y of X the following
are equivalent.

(1) Y is a-psendocompact;

(2)Y is Co-compact in X ;

(3) Y is a-dense in X.

Proof. (1) = (2). This is evident.

(2) = (3). Let J € {I]<™. Then n;(Y) is dense and Cy-compact in ], X;
Since w(]],c; Xi) < o, by Theorem 1.2(6), w,(Y) must be compact and so 1r1(Y) =
Tics X

(3) = (I). Let f:Y — R* be a continuous function. By Corollary 4.6, there are
J € [T]S* and a continuous function ¢: 7;(Y) — R* such that ¢om; = f. The function
¢ is continuous on the compact space 7;(Y') = [[;; Xs. so f(Y) is compact. O

By using filters, we may generalize the concept of ¥ -product as follows:

Definition 4.8. Let « be a cardinal, F a filteron o, X = HE <o Xe and z € X. Then we
define the 3 --product of X basedat zby 3" (2} ={zx € X: { < a: 2 =z} € F}.

It is not hard to see that if F is a filter on . then 3 (2) = N{X,(2): p € B(a) and
F C p}. for every z € [l Xe. We have that if ¥ < @, then 32 1(2) = 32, (2),
where 37, (2) = {z € X: [{§ <o w¢ # 2¢}| < 7} is the original definition of the 3
product baqed at z € X = []¢., Xe. Hence, for every filter 7 on a with Fy(a) C F,
we obtain that 3_(z) C 3 £(2) for every z € [],., Xe. Notice that if w < a < 7,
then the 3. -product of [],.; X; is a-dense.

Lemma 4.9. Let F be a filter on o, let X = H€ <a Xe be a product of spaces having
more than one point and let z € []ecq Xe. Then 3 (2) is a dense (proper) subset of
X if and only if F(a) C F.

Proof. Necessity. Assume that there is A € F,(a) \ F. Put a\ A ={&: i <m}. Then,
we have that B\ A # @ forall B € F. Let V =, _,, n.,' (Vi), where V; is a nonempty
open subset of X¢, such that z¢, ¢ V; for every i < m< w By assumption, there is
x € VN3 r(z). Since {£ < ar zg = 2} € F, we can find k < m so that z¢, = z¢,,
but this is impossible because x¢, € Vi and 2, ¢ V3.
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Sufficiency. Let V =, w{}'(Vj), where £; < a and Vj # § is an open subset of
Xg; forevery j <n < w. Since F,(a) € F, A =a\{§: j <n} € F. It then follows
that VNY -(z) #0. O

We turn now to the principal result concerning Y --products,

Theorem 4.10. Let X = HE <a X¢ be a product of compact spaces having more than
one point and w(X¢) < vy < aforall £ < a. Let z € X and let F be a filter on o such
that sup{s < o Fy(a) C F} =~. Then, the following are equivalent:

Dr<y

(2) 3 ¢(2) is k-pseudocompact;

(3) Y £(z) is Cy-compact in X.

In order to prove Theorem 4.10 we need the following lemmas.

Lemma 4.11. Let o be an uncountable cardinal, w <y < o, X = 1l¢<o X¢ a product
of compact spaces having more than one point and z € X. If w(X¢) < vy forall £ < «,
then
() Z_I( z) is K-pseudocom; uct for all w € & < v and it is not ~-pseudocompact;
and
(2) if ¥ is a filter on a with F.(a) C F, then ¥ z(z)} is k-pseudocompact for all
wE K<y and if y € F, then v < p(_ £(2)).

Proof. (1) In virtue of Corollary 10.7(b) of [12], B, R) =X Letw< s<y We
have that the space 3 (2) is a dense subset of X and foreach K € [I]<%, ax(3,(2)) =
Meex Xe. By Lemma 4.7, 2, (%} is w-pseudocompact. Now, for each ¢ < « choose
zg € X¢ \ z¢. Since w(X¢) < oy for all £ < v, then G = ., 7~ (%) is a G,-set in
X which does not meet 3. (z). Thus, 3, (z) is not y-pseudocompact.

(2) Since 3, (2) € 3_x(2), by clause (1), I 2(2) is n-pseudocompact for all w < x <
7. Assume that v € F and that p(3_ (2)) < o Let ¥ < & < o and let Jillean Xe =
[0, 1]* be an embedding. First, observe that G = {A C x: A € F} is a filter on . Then
m[X £ (2)] = 3 5(y), where y = m,(z). It follows from Lemma 4.9 that >-¢(y) is not
compact since F, (k) C G. Hence, j[3 5(y)] is not compact in [0, 1%, So, 3" 2(2) is not
#-psendocompact. Therefore, v < p(3£)(z)*. O

Lemma 4.12. Ler X = [‘[£ <o X¢ be a product of compact spaces having more than one
point and weight <y < . Let z = (2)¢<a € X and let p be an ultrafilter on o such
that sup{x < oz F.(a) C p} = ~v. Then, the following are equivalent:

<y

(2) 3°,(2) is k-pseudocompact;

(3) 3°,(2) is Cx-compact in X.

Proof. (1) = (2) is a consequence of Lemma 4.11 and (2) = (3) is evident. We only
need to prove (3) implies (1). By hypothesis, .+ (a) is not contained in p. Choose
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F e F. +(a)\p. Since F € F,+(0) and p is an ulirafilter, ja\ F| <yand a\ F € p.
For each £ € o\ F, let z¢ € X\ {z}. The set G = ﬂ{ﬂg'(zg)z feca\F}isa
G,-set in X which does not intersect 3, (2). It follows from Theorem 1.2 that 37 (2)
is not C.,-compact in X. O

Proof of Theorem 4.10. We only have to prove (3) = (1). Let A € F,+ (a)\ F. Choose
an ultrafilter p on o such that 7 C p and A € F,+(a) \ p. Now, by Lemma 4.11, we
obtain that 3 (z) is not C,-compact in X. Let f: X — R” be a continuous function

such that f[Y (2)] is not compact. Since - £(z) is dense in 3= (2), f[3°£(2)] is not
compact. So, ), =(2) is not C-compact in X. O

Corollary 4.13. Ler a be a cardinal. Then,
(1) if ¥y < o, then R* contains a pseudocompact subspace Y such that p(Y') = 7,

(2) if a is a limit, then R* ¢ ins a pseudocompact subspace Y such that p(Y') = o
(3) if a is not a limit, then there is not a pseudocompact subspace Y of R™ with
plY) =o.

It follows from Corollary 4.13(2) that there is a noncompact, pseudocompact space X
with p(X) = w(X).

We recall for the reader that a filter F on a cardinal number « is said io be y-complete,
fory < a, if ﬂ«,c A¢ € F whenever Ag € F for every { < x and & < . Notice that a
filter F is not w-complete iff there is {A,: » < w} C F such that (., An = @ and
Apty C A, forevery n < w,

Theorem 4.14. Let o be an uncountable cardinal axd let X = ], ., X¢ be a product
of spaces having more than one point and z € X. If F is a filter on o which is not
wy-complete, then 3 p(2) cannot be countably compact.

Proof. Fix r € X such that r¢ # 2z for all £ < a. For each n < w define y™ € 3 (2)
by y¢ = 2¢ if £ € An and y™ = r¢ otherwise. Suppose that {y™: n < w} has an
accumulation point in 3 (z), say ». Set A = {§ < a: y¢ = 2¢}. Then, A € F. Pick
¢ € A and let V be an open subset of X with z; € VV and r¢ ¢ V. Let m < w be such
that ¢ ¢ Am. Then, y" ¢ =7 H(V) for every m < n < w, but this is a contradiction. O

Letw < v < e, let X =[], X¢ be a product of compact spaces having more than
one point, w(X¢) < v foreach £ < a and z € X. If F is a filter on o satisfying the
conditions of Theorem 4.14 and F,(a) C F, then 3 z(2) is a ~y-pseudocompact space
that is not countably compact. A very interesting question that remains unsolved is the
following.

Question 4.15 (T. Retta [29]). For w < a. are there a-psendocompuct spaces X and Y
such that X x Y is not pseudocompact?*

*This question has been answered in the negatively by S. Garcia-Ferreira, M. Sanchis and S. Watson.
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