

Topology and its Applications 77 (1997) 139-160

On C_{α} -compact subsets

S. García-Ferreira^{a,*}, M. Sanchis^{b,1}, A. Tamariz-Mascarúa^{c,2}

^a Instituto de Matemáticas, Ciudad Universitaria (UNAM), 04510, México, D.F., México

^b Departamento de Matemáticas, Universidad Jaume I, Campus de Penyeta Roja, 12071, Castellón, Spain

^c Departamento de Matemáticas, Facultad de Ciencias, Ciudad Universitaria (UNAM), 04510, México, D.F.,

México

Received 31 July 1995; revised 7 March 1996

Abstract

For an infinite cardinal α , we say that a subset B of a space X is C_{α} -compact in X if for every continuous function $f: X \to \mathbb{R}^{\alpha}$, f[B] is a compact subset of \mathbb{R}^{α} . This concept slightly generalizes the notion of α -pseudocompactness introduced by J.F. Kennison: a space X is α -pseudocompact if X is C_{α} -compact in itself. If $\alpha = \omega$, then we say C-compact instead of C_{ω} -compact and w-pseudocompactness agrees with pseudocompactness. We generalize Tamano's theorem on the pseudocompactness of a product of two spaces as follows: let $A \subseteq X$ and $B \subseteq Y$ be such that A is z-embedded in X. Then the following three conditions are equivalent; (1) $A \times B$ is C_{α} compact in $X \times Y$; (2) A and B are C_{α} -compact in X and Y, respectively, and the projection map $\pi: X \times Y \to X$ is a z_{α} -map with respect to $A \times B$ and A; and (3) A and B are C_{α} -compact in X and Y, respectively, and the projection map $\pi: X \times Y \to X$ is a strongly z_{α} -map with respect to $A \times B$ and A (the z_{α} -maps and the strongly z_{α} -maps are natural generalizations of the z-maps and the strongly z-maps, respectively). The degree of C_{α} -compactness of a C-compact subset B of a space X is defined by: $\rho(B, X) = \infty$ if B is compact, and if B is not compact, then $\rho(B, X) = \sup\{\alpha: B \text{ is } C_{\alpha} \text{-compact in } X\}$. We estimate the degree of pseudocompactness of locally compact pseudocompact spaces, topological products and \sum -products. We also establish the relation between the pseudocompact degree and some other cardinal functions. In the context of uniform spaces, we show that if A is a bounded subset of a uniform space (X, U), then A is C_{α} -compact in \widehat{X} , where $(\widehat{X},\widehat{\mathcal{U}})$ is the completion of (X,\mathcal{U}) iff f(A) is a compact subset of \mathbb{R}^{α} from every uniformly continuous function from X into \mathbb{R}^{α} ; we characterize the C_{α} -compact subsets of topological groups; and we also prove that if $\{G_i: i \in I\}$ is a set of topological groups and A_i is a C_{α} -compact subset of G_{α} for all $i \in I$, then $\prod_{i \in I} A_i$ is a C_{α} -compact subset of $\prod_{i \in I} G_i$. © 1997 Elsevier Science B.V.

Keywords: C_{α} -compact; α -pseudocompact; z_{α} -map; Strongly z_{α} -map; $\sum_{\mathcal{F}}$ -product; p-compact; p-pseudocompact

AMS classification: 54C50; 54D35

^{*} Corresponding author. E-mail: sgarcia@zeus.ccu.umich.mx, garcia@servidor.unam.mx.

¹ E-mail: sanchis@mat.uji.es.

² E-mail: atamarif@condor.dgsca.unam.mx.

0. Introduction

All spaces are assumed to be Tychonoff. For a space Λ , $\mathcal{Z}(X)$ will denote the set of zero-sets of X and for $x \in X$, $\mathcal{N}(x)$ is the set of all neighborhoods of x in X. If $f: X \to Y$ is a continuous function, then $\beta(f): \beta(X) \to \beta(Y)$ denotes the Stone–Čech extension of f. The Greek letters α , γ and κ will stand for infinite cardinal numbers. If X is a set and α is a cardinal, then $[X]^{\leq \alpha} = \{A \subseteq X : |A| \leq \alpha\}$. If α is a cardinal number, then α also stands for the discrete space of cardinality α . We know that $\beta(\alpha)$ can be identified with the set of all ultrafilters on α and its remainder $\alpha^* = \beta(\alpha) \setminus \alpha$ with the set of all free ultrafilters on α . If $\gamma \leq \alpha$, then $\mathcal{F}_{\gamma}(\alpha)$ will stand for the filter $\{A \subseteq \alpha : |\alpha \setminus A| < \gamma\}$. Observe that if $\kappa \leq \gamma \leq \alpha$, then $\mathcal{F}_{\kappa}(\alpha) \subseteq \mathcal{F}_{\gamma}(\alpha)$. For an ordinal number θ , $[0, \theta)$ will denote the space that consists of the underlying set $\{\mu: \mu < \theta\}$ equipped with the order topology. The space $[0, \theta + 1)$ will be denoted by $[0, \theta]$. The weight and the density of a space X are denoted by w(X) and d(X), respectively. A space X is said to be α -Lindelöf if every open cover of X contains a subcover of cardinality not bigger than α . The Lindelöf number $\ell(X)$ of a space X is the smallest cardinal α such that X is α -Lindelöf. For a space X, the set of all real-valued continuous functions defined on X will be denoted by C(X) and, if α is a cardinal, then $C(X,\mathbb{R}^{\alpha})$ will denote the set of all continuous functions from X to \mathbb{R}^{α} . For a cardinal α , a subset G of a space X is called a G_{α} -set if G is the intersection of α -many open subsets of X (the G_{ω} -sets are usually called G_{δ} -sets). If A is a subset of a space X and α is a cardinal, then the G_{α} -closure of A in X is defined by

$$G_{\alpha}$$
-cl_X(A) = { $x \in X$: if G is a G_{α} -set of X and $x \in G$, then $G \cap A \neq \emptyset$ }.

We simply write G_{α} -cl(A) if ambiguity is impossible. We say that D is G_{α} -dense in X if G_{α} -cl_X(D) = X. Notice that if $\alpha < \gamma$, then G_{γ} -cl_X(A) $\subseteq G_{\alpha}$ -cl_X(A) for a subset A of a space X. If $r \in \mathbb{R}$, then r^* is the point of \mathbb{R}^{α} with all coordinates equal to r. If $f: X \to \mathbb{R}^{\alpha}$ is a continuous function, then for every $\xi < \alpha$ we write $f_{\xi} = \pi_{\xi} \circ f$, where $\pi_{\xi}: \mathbb{R}^{\alpha} \to \mathbb{R}$ is the projection map on the ξ th coordinate.

In [23], Hewitt studied the spaces X such that f[X] is a bounded subset of \mathbb{R} for each $f \in C(X)$: he called these spaces *pseudocompact*. Besides, he proved that the pseudocompactness of a space X is equivalent to each one of the following statements:

(1) f[X] is a compact subset of \mathbb{R} for each $f \in C(X)$;

(2) X is G_{δ} -dense in $\beta(X)$;

(3) X is G_{δ} -dense in every compactification of X.

Hewitt's concept has been generalized, in different ways, by several topologists (see [2,5-7,17,24,26]); in particular, a subset B of a space X is called *bounded*, in X, provided that f[B] is a bounded subset of \mathbb{R} for all $f \in C(X)$: the boundedness of a subset B of a space X is equivalent to the condition that if \mathcal{U} is a locally finite family of open subsets of X such that each one of them meets B, then \mathcal{U} is finite. It should be remarked that a subset B of a space X is bounded if and only if for every cardinal α and for

every $f \in C(X, \mathbb{R}^{\alpha})$, there is a set $\{[a_{\xi}, b_{\xi}]: \xi < \alpha\}$ of closed intervals of \mathbb{R} such that $f[B] \subseteq \prod_{\xi < \alpha} [a_{\xi}, b_{\xi}]$. In parallel, Isiwata [24] introduced and investigated the subsets B of a space X with the property that inf $\{f(x): x \in B\} > 0$ for every $f \in C(X)$ which is positive on B, equivalently, f[B] is compact for every $f \in C(X)$: this concept is named hyperbounded by Buchwalter [7] and C-compact by the authors of [17]. We adopt the terminology from [17].

In Section 1, we give the basic properties of C_{α} -compact subsets and a generalization, in the context of C_{α} -compactness, of Tamano's theorem [34]: $X \times Y$ is pseudocompact iff both X and Y are pseudocompact and the projection map $\pi_X : X \times Y \to X$ is z-closed. The degree of C_{α} -compactness of a C-compact subset is introduced and estimated on locally compact, pseudocompact spaces in Section 2. In Section 3, we study the C_{α} -compact subsets of the completion of a uniform space and of topological groups. The degree of pseudocompactness of topological products and their \sum -products are studied in Section 4.

1. C_{α} -compact subsets

We start with a very natural generalization of C-compactness.

Definition 1.1. Let X be a space. A subset B of X is said to be C_{α} -compact in X if f[B] is a compact subset of \mathbb{R}^{α} for every $f \in C(X, \mathbb{R}^{\alpha})$.

It is not hard to see that a subset B of a space X is C-compact if and only if it is C_{ω} -compact in X, and if α and γ are cardinals with $\alpha < \gamma$, then every C_{γ} -compact subset is a C_{α} -compact subset. Thus, every C_{α} -compact subset is C-compact. If X is C_{α} -compact in itself (equivalently, in $\beta(X)$), then we say that X is α -pseudocompact: this concept was introduced by Kennison in [26]. So we have that every α -pseudocompact space is pseudocompact for any cardinal number α . It is known that $[0, \omega_1)$ is a pseudocompact space that is not ω_1 -pseudocompact. Proposition 2.7 of [5], Lemma 2.4 of [17] and Theorem 1 of [29] have the following C_{α} -compact version (recall that a subset A of a space X is said to be z-embedded in X if every zero-set of A is the restriction of some zero-set of X).

Theorem 1.2. For a subset B of X, the following are equivalent:

- (1) B is C_{α} -compact in X;
- (2) B is C_{α} -compact in $\beta(X)$;
- (3) B is G_{α} -dense in $cl_{\beta(X)}(B)$;
- (4) B is G_{α} -dense in $c!_{v(X)}(B)$;
- (5) B is G_{α} -dense in $cl_{K(X)}(B)$ for every compactification K(X) of X;
- (6) every cover of B of cardinality ≤ α consisting of cozero sets of X has a finite subcover;
- (7) if $\{Z_{\xi}: \xi < \alpha\} \subseteq Z(X)$ and $B \cap \bigcap_{\xi \in I} Z_{\xi} \neq \emptyset$ for every finite subset I of α , then $B \cap \bigcap_{k < \alpha} Z_{\xi} \neq \emptyset$;

S. García-Ferreira et al. / Topology and its Applications 77 (1997) 139-160

- (8) if $0^* \in cl_{\mathbb{R}^{\alpha}}(f[B])$ for a continuous function $f: X \to \mathbb{R}^{\alpha}$, then $0^* \in f[B]$;
- (9) f[B] is a closed subset of \mathbb{R}^{α} for all continuous functions $f: X \to \mathbb{R}^{\alpha}$;
- (10) for every z-embedded subset S of X that contains B, B is C_{α} -compact in S;
- (11) for every cozero subset C of X that contains B, B is C_{α} -compact in C;
- (12) for every continuous function $f: X \to Y$ with $w(Y) \leq \alpha$, f[B] is a compact subset of Y.

We then have that B is C_{α} -compact in the space X iff G_{α} -cl_{$\beta(X)$}(B) = cl_{$\beta(X)$}(B). In the next corollary we state two useful conditions equivalent to α pseudocompactness. Before we state it we recall that a family of subsets of a set is said to have the α -*intersection* property if every subfamily of cardinality not bigger than α has nonempty intersection.

Corollary 1.3. For a space X the following are equivalent:

(1) X is α -pseudocompact;

142

- every family of zero sets having the finite intersection property has the αintersection property;
- (3) for every function $f: X \to [0,1]^{\alpha}$, $cl_{\beta(X)}(f^{-1}(x)) = (\beta(f))^{-1}(x)$ for all $x \in [0,1]^{\alpha}$.

The equivalence $(1) \Leftrightarrow (2)$ of the corollary just given was proved in [26]. The next result extends Corollary 2.9 of [17].

Lemma 1.4. Let X be an α -pseudocompact space. If $C = \bigcap_{\xi < \alpha} Z_{\xi}$, where $Z_{\xi} \in Z(X)$ for each $\xi < \alpha$, then C is C_{α} -compact in X as well.

Now, we give a necessary condition to separate a particular subset of a space from a C_{α} -compact subset.

Lemma 1.5. Let X be a space. If $A = \bigcap_{\xi < \alpha} Z_{\xi}$, where $Z_{\xi} \in \mathcal{Z}(X)$ for each $\xi < \alpha$, B is C_{α} -compact in X and $A \cap B = \emptyset$, then A and B are completely separated.

Proof. For each $\xi < \alpha$, choose a continuous function $f_{\xi} : X \to \mathbb{R}$ such that $f_{\xi}^{-1}(0) = Z_{\xi}$. Let $f : X \to \mathbb{R}^{\alpha}$ be the evaluation map of the set $\{f_{\xi} : \xi < \alpha\}$. Then $f(z) = (f_{\xi}(z))_{\xi < \alpha}$ for $z \in X$. Then we have that $A = f^{-1}(0^*)$. Since B is C_{α} -compact in X and disjoint from A, f[B] is a compact subset of \mathbb{R}^{α} which does not contain 0^* . Hence, we can find a continuous function $g : \mathbb{R}^{\alpha} \to \mathbb{R}$ such that $g(0^*) = 0$ and $g[f[B]] = \{1\}$. Then, $g \circ f$ witnesses that A and B arc completely separated. \Box

Definition 1.6. A continuous surjection $f: X \to Y$ is said to be a z_{α} -map with respect to $A \subseteq X$ and $B \subseteq Y$ if f[A] = B and $f[\bigcap_{\xi < \alpha} Z_{\xi} \cap A]$ is a closed subset of B provided that $Z_{\xi} \in \mathcal{Z}(X)$ for each $\xi < \alpha$. In addition, if $f[\bigcap_{\xi < \alpha} Z_{\xi} \cap A] = \bigcap_{\xi < \alpha} K_{\xi}$, where $K_{\xi} \in \mathcal{Z}(B)$ for each $\xi < \alpha$, then we say that f is a strongly z_{α} -map with respect to A and B. N. Noble [28] studied the projections $\pi: X \times Y \to X$ which are z-maps with respect to $A \times B$ and A, where $A \subseteq X$ and $B \subseteq Y$, and called them relatively z-closed. If $\alpha = \omega, X = A$ and B = Y, then we simply say z-map and strongly z-map: the z-maps were introduced by Frolik in [16] and the strongly z-maps were studied in [19]. Tamano's theorem (see [34], [10, Theorem 4.1]) on pseudocompactness of a product of two spaces has been generalized by Noble [28] as follows: if $A \subseteq X$ with a nonisolated point and $B \subseteq Y$, then $A \times B$ is bounded in $X \times Y$ if and only if the projection map $\pi: X \times Y \to X$ is a z-map with respect to $A \times B$ and A, A is bounded in X and B is bounded in Y. Now, we shall extend Tamano's theorem in the context of C_{α} -compactness. First, we prove some preliminary lemmas.

Lemma 1.7. Let $A \subseteq X$ and $B \subseteq Y$. If $A \times B$ is C_{α} -compact in $X \times Y$, then

$$\operatorname{cl}_X\left(\pi\bigg[\bigcap_{\xi<\alpha}Z_{\xi}\cap(A\times B)\bigg]\right)=\pi\bigg[\bigcap_{\xi<\alpha}Z_{\xi}\cap(A\times B)\bigg]\subseteq A,$$

where $\pi : X \times Y \to X$ is the projection map and $Z_{\xi} \in \mathcal{Z}(X \times Y)$ for each $\xi < \alpha$; that is, π is a z_{α} -map with respect to $A \times B$ and A.

Proof. Put
$$Z = \bigcap_{\xi < \alpha} Z_{\xi}$$
, where $Z_{\xi} \in \mathcal{Z}(X \times Y)$ for each $\xi < \alpha$. Suppose that $x \in cl_X(\pi[Z \cap (A \times B)]) \setminus \pi[Z \cap (A \times B)].$

We have that $(\{x\} \times B) \cap Z = \emptyset$ and since $\{x\} \times B$ is C_{α} -compact in $X \times Y$, by Lemma 1.5, there is a continuous function $f: X \times Y \to [0, 1]$ such that f((x, b)) = 1for all $b \in B$ and $Z \subseteq f^{-1}(0)$. Arguing as in the proof of Theorem 4.1((a) \Leftrightarrow (b)) of [10], we obtain a contradiction. \Box

In the next three lemmas, we generalize a result that is included in the proof of 3.4(a) and 3.5 of [19]. In order to prove them we shall slightly modify the arguments given in the original proofs from [19].

Lemma 1.8. If $f: X \to Y$ is a z-map with respect to $A \subseteq X$ and $B \subseteq Y$ such that its restriction $f: A \to B$ is an open map, $Z \in Z(X)$ and C is a cozero set of X such that $Z \subseteq C$, then there is $K \in Z(B)$ for which $f[Z \cap A] \subseteq K \subseteq f[C \cap A]$.

Proof. Let $h: X \to [0, 1]$ be a continuous function such that

 $Z = h^{-1}(0)$ and $X \setminus C = h^{-1}(1)$.

Set $D = \{r \in (0, 1): r \text{ is dyadic}\}$. Now, for each $r \in D$ we put

$$U_r = f[h^{-1}([0,r)) \cap A].$$

Then, U_r is an open subset of A and $A = \bigcup_{r \in D} U_r$. Since f is a z-map with respect to A and B, $f[h^{-1}([0, r]) \cap A]$ is a closed subset of B and hence

$$\operatorname{cl}_B(U_r) \subseteq f[h^{-1}([0,r]) \cap A] \subseteq U_s$$

whenever $r, s \in D$ and r < s. By Lemma 3.12 of [20], $g(y) = \inf\{r \in D: y \in U_r\}$ for $y \in B$ defines a continuous function from B to [0, 1]. If $K = g^{-1}(0)$, then $K \in Z(B)$ and $f[Z \cap A] \subseteq K \subseteq f[C \cap A]$. \Box

Lemma 1.9. Let $f: X \to Y$ be a z-map with respect to $A \subseteq X$ and $B \subseteq Y$ such that its restriction $f: A \to B$ is an open map and $f^{-1}(b) \cap A$ is C_{α} -compact in X for all $b \in B$. If $h: X \to [0, 1]^{\alpha}$ is a continuous function and $0 < n < \omega$, then there is a set $\{K_{\xi}: \xi < \alpha\} \subseteq \mathcal{Z}(B)$ such that

$$f[h^{-1}(0^*)\cap A]\subseteq \bigcap_{\xi<\alpha}K_\xi\subseteq f\Big[h^{-1}\Big(\Big[0,\frac{1}{n}\Big)^{\alpha}\Big)\cap A\Big].$$

Proof. We proceed by transfinite induction on α . Lemma 1.8 is the case when $\alpha = \omega$. Assume that the conclusion of the lemma holds for all cardinals $\gamma < \alpha$ and for each $0 < m < \omega$. Let $h: X \to [0, 1]^{\alpha}$ be a continuous function and $0 < n < \omega$. For each ordinal number $\mu < \alpha$, we set $h(\mu) = j_{\mu} \circ h: X \to [0, 1]^{\mu}$, where $j_{\mu}: [0, 1]^{\alpha} \to [0, 1]^{\mu}$ is the projection map. By induction hypothesis, for each $\mu < \alpha$ there is a set

 $\left\{K^{\mu}_{\xi}:\ \xi<\mu\right\}\in\mathcal{Z}(B)$

such that

$$f[h(\mu)^{-1}(0^*)\cap A]\subseteq \bigcap_{\xi<\mu}K^{\mu}_{\xi}\subseteq f\left[h(\mu)^{-1}\left(\left[0,\frac{1}{n+1}\right]^{\mu}\right)\cap A\right].$$

Hence,

$$\begin{split} f[h^{-1}(0^*) \cap A] &= f\bigg[\bigcap_{\mu < \alpha} h(\mu)^{-1}(0^*) \cap A\bigg] \subseteq \bigcap_{\mu < \alpha} f[h(\mu)^{-1}(0^*) \cap A] \\ &\subseteq \bigcap_{\mu < \alpha} \bigcap_{\xi < \mu} K_{\xi}^{\mu} \subseteq \bigcap_{\mu < \alpha} f\bigg[h(\mu)^{-1}\bigg(\bigg[0, \frac{1}{n+1}\bigg]^{\mu}\bigg) \cap A\bigg]. \end{split}$$

We claim that

$$\bigcap_{\mu<\alpha} f\left[h(\mu)^{-1}\left(\left[0,\frac{1}{n+1}\right]^{\mu}\right)\cap A\right] = f\left[\bigcap_{\mu<\alpha} h(\mu)^{-1}\left(\left[0,\frac{1}{n+1}\right]^{\mu}\right)\cap A\right].$$

In fact, let

$$y \in \bigcap_{\mu < \alpha} f\left[h(\mu)^{-1}\left(\left[0, \frac{1}{n+1}\right]^{\mu}\right) \cap A\right].$$

Then, we have that $f^{-1}(y) \cap A \cap h(\mu)^{-1}([0, 1/(n+1)]^{\mu}) \neq \emptyset$ for each $\mu < \alpha$. Since $h(\nu)^{-1}([0, 1/(n+1)]^{\nu}) \subseteq h(\mu)^{-1}([0, 1/(n+1)]^{\mu})$ whenever $\mu < \nu < \alpha$ and $f^{-1}(y) \cap A$ is C_{α} -compact in X, by Theorem 1.2(7), we have that

$$f^{-1}(y) \cap A \cap \bigcap_{\mu < \alpha} h(\mu)^{-1} \left(\left[0, \frac{1}{n+1} \right]^{\mu} \right) \neq \emptyset$$

and hence

$$y \in f\left[\bigcap_{\mu < \alpha} h(\mu)^{-1} \left(\left[0, \frac{1}{n+1}\right]^{\mu} \right) \cap A \right] = f\left[h^{-1} \left(\left[0, \frac{1}{n+1}\right]^{\alpha} \right) \cap A \right].$$

Therefore,

$$\begin{split} f\left[h^{-1}(0^{\bullet})\cap A\right] &\subseteq \bigcap_{\mu < \alpha} \bigcap_{\xi < \mu} K_{\xi}^{\mu} \subseteq f\left[\bigcap_{\mu < \alpha} h(\mu)^{-1} \left(\left[0, \frac{1}{n+1}\right]^{\mu}\right) \cap A\right] \\ &= f\left[h^{-1} \left(\left[0, \frac{1}{n+1}\right]^{\alpha}\right) \cap A\right] \subseteq f\left[h^{-1} \left(\left[0, \frac{1}{n}\right)^{\alpha}\right) \cap A\right]. \end{split}$$

Lemma 1.10. If $f: X \to Y$ is a z-map with respect to $A \subseteq X$ and $B \subseteq Y$ such that its restriction $f: A \to B$ is an open map and $f^{-1}(b) \cap A$ is C_{α} -compact in X for all $b \in B$, then f is a strongly z_{α} -map with respect to A and B.

Proof. Let $\{Z_{\xi}: \xi < \alpha\} \subseteq \mathcal{Z}(X)$. Fix a continuous function $h: X \to [0, 1]^{\alpha}$ such that $\bigcap_{\xi < \alpha} Z_{\xi} = h^{-1}(0^*)$. For each ordinal number $\mu < \alpha$, we put $h(\mu) = j_{\mu} \circ h: X \to [0, 1]^{\mu}$, where $j_{\mu}: [0, 1]^{\alpha} \to [0, 1]^{\mu}$ is the projection map. Notice that $\bigcap_{\mu < \alpha} h(\mu)^{-1}(0^*) = h^{-1}(0^*)$. According to Lemma 1.9, for each $\mu < \alpha$ and for each $0 < n < \omega$ we may find $\{K_{\mu,\xi}^n: \xi < \mu\} \subseteq \mathcal{Z}(B)$ such that

$$f[h(\mu)^{-1}(0^*)\cap A]\subseteq \bigcap_{\xi<\mu}K_{n,\xi}^{\mu}\subseteq f\Big[h(\mu)^{-1}\Big(\Big[0,\frac{1}{n}\Big)^{\mu}\Big)\cap A\Big].$$

Hence,

$$\begin{split} f[h^{-1}(0^*) \cap A] &= f\bigg[\bigcap_{\mu < \alpha} h(\mu)^{-1}(0^*) \cap A\bigg] \subseteq \bigcap_{0 < n < \omega} \bigcap_{\mu < \alpha} \bigcap_{\xi < \mu} K_{n,\xi}^{\mu} \\ &\subseteq \bigcap_{0 < n < \omega} \bigcap_{\mu < \alpha} f\bigg[h(\mu)^{-1}\left(\left[0, \frac{1}{n}\right)^{\mu}\right) \cap A\bigg]. \end{split}$$

To show that

$$f[h^{-1}(0^*) \cap A] = \bigcap_{0 < n < \omega} \bigcap_{\mu < \alpha} \bigcap_{\xi < \mu} K^{\mu}_{n,\xi} = \bigcap_{0 < n < \omega} \bigcap_{\mu < \alpha} f\Big[h(\mu)^{-1}\Big(\Big[0, \frac{1}{n}\Big)^{\mu}\Big) \cap A\Big]$$

we argue as in the proof of Lemma 1.9.

A C_{α} -compactness version of Tamano's theorem is the following.

Theorem 1.11. Let $A \subseteq X$ and $B \subseteq Y$. If A is a z-embedded in X, then the following are equivalent:

- (1) $A \times B$ is C_{α} -compact in $X \times Y$;
- (2) A and B are C_{α} -compact in X and Y, respectively, and the projection map $\pi: X \times Y \to X$ is a z_{α} -map with respect to $A \times B$ and A;
- (3) A and B are C_{α} -compact in X and Y, respectively, and the projection map $\pi: X \times Y \to X$ is a strongly z_{α} -map with respect to $A \times B$ and A.

Proof. (1) \Rightarrow (2). This is Lemma 1.7.

(2) \Rightarrow (3) This follows from Lemma 1.10.

(3) \Rightarrow (1) We shall verify clause (7) of Theorem 1.2. Let $\{Z_{\xi}: \xi < \alpha\} \subseteq \mathcal{Z}(X)$ such that $(A \times B) \cap \bigcap_{\xi \in I} Z_{\xi} \neq \emptyset$ for each finite subset I of α . By assumption, $\pi[\bigcap_{\xi < \alpha} Z_{\xi} \cap (A \times B)] = \bigcap_{\xi < \alpha} R_{\xi}$, where $R_{\xi} \in \mathcal{Z}(A)$ for each $\xi < \alpha$. Now, for each $\xi < \alpha$, we can find $L_{\xi} \in \mathcal{Z}(X)$ for which $A \cap L_{\xi} = R_{\xi}$. It is then evident that every finite subfamily of $\{L_{\xi}: \xi < \alpha\}$ meets A and since A is C_{α} -compact in X,

$$A \cap \bigcap_{\xi} L_{\xi} = \bigcap_{\xi < \alpha} R_{\xi} = \pi \left[\bigcap_{\xi < \alpha} Z_{\xi} \cap (A \times B) \right] \neq \emptyset.$$

Hence, $A \times B \cap \bigcap_{\xi < \alpha} Z_{\xi} \neq \emptyset$. \Box

It is pointed out in [5, Corollary 2.8] that a z-embedded subset B of a space X is C-compact in X iff B is pseudocompact. It follows from necessity in Noble's theorem quoted above and Theorem 1.11 that:

Corollary 1.12. Let $A \subseteq X$ and $B \subseteq Y$. If A is z-embedded in X, then the following are equivalent:

(1) $A \times B$ is C-compact in $X \times Y$;

(2) $A \times B$ is bounded in $X \times Y$ and A and B are C-compact in X and Y, respectively.

It then follows from Corollary 1.12 that if X is a pseudocompact space, then $X \times B$ is bounded in $X \times Y$ for every C-compact subset B of a space Y if and only if $X \times B$ is C-compact in $X \times Y$ for every C-compact subset B of Y. This improves Corollary 5.6 of [18].

Question 1.13. If A and B are C_{α} -compact in X and Y, respectively, and the projection map $\pi: X \times Y \to X$ is a strongly z_{α} -map with respect to $A \times B$ and A, must $A \times B$ be C_{α} -compact in $X \times Y$?

2. The degree of pseudocompactness

We know that any space X can be embedded in $\mathbb{R}^{w(X)}$. Hence, a subset B of a space X is compact if and only if B is $C_{w(X)}$ -compact. This suggests that one should study the following cardinal function that, in particular, estimates the degree of pseudocompactness of a pseudocompact space.

Definition 2.1. Let X be a space. If B is a C-compact subset of X, then we define:

$$\rho(B, X) = \begin{cases} \infty & \text{if } B \text{ is compact,} \\ \sup\{\alpha; B \text{ is } C_{\alpha} \text{-compact in } X\} & \text{if } B \text{ is not compact.} \end{cases}$$

If X is pseudocompact, then we simply write $\rho(X)$ instead of $\rho(X, X)$. It should be noticed that if B is C-compact in X, then $\rho(B, X) \ge \omega$. Since every space X can be embedded in $\mathbb{R}^{w(X)}$, we must have that $\rho(X) \le \ell(X) \le w(X)$. Hence, if X is pseudocompact and noncompact, then X cannot be $\ell(X)$ -pseudocompact. If X is a noncompact, pseudocompact space and $\rho(X)$ is a successor cardinal, then X is $\rho(X)$ -pseudocompact. Thus, a space X is compact iff X is $\ell(X)$ -pseudocompactX iff X is w(X)-pseudocompact. By Theorem 1.2, we have that $\rho(X) = \rho(X, \beta(X))$ for every pseudocompact space X. It follows from the definition that if X is a pseudocompact space, then $\rho(X) \leq \rho(X, \beta(X))$ for any compactification B(X) of X. By Theorem 1.2, we have that $\rho(X) = \sup \{ \alpha : G_{\alpha} - c |_{\beta(X)}(X) = \beta(X) \}$ for every noncompact, pseudocompact space X.

A space X is called *initially* α -compact, for a cardinal α , if every open cover \mathcal{U} of X with $|\mathcal{U}| \leq \alpha$ has a finite subcover (this class of spaces was introduced by Y.M. Smirnov [32]). We have that a space X is initially α -compact iff every subset A of X of cardinality not bigger than α has a complete accumulation point in X (a proof of this fact is available in [33]). We omit the proof of the following easy result.

Theorem 2.2. If X is initially α -compact, then $\alpha \leq \rho(X)$.

We notice that $\rho([0, \omega_1)) = \omega$ and $[0, \omega_1)$ is initially ω -compact and if $p \in \omega^*$ satisfies that $\chi(p, \beta(\omega)) = 2^{\omega}$ (these ultrafilters exist in ZFC, see [8, Theorem 2.7]), then $\beta(\omega) \setminus \{p\}$ is γ -pseudocompact for every $\gamma < 2^{\omega}$ and it is not initially 2^{ω} -compact.

If X is a locally compact space, we denote by A(X) the one-point compactification of X by the point ∞ (in the sense of Alexandroff). Then, for every uncountable cardinal number α we have that α is C-compact in $A(\alpha)$, α is not C_{α} -compact in $A(\alpha)$, $\rho(\alpha^+, A(\alpha^+)) = \alpha$ and if α is a limit cardinal, then $\rho(\alpha, A(\alpha)) = \alpha$. It is pointed out in Corollaries 3.8 and 3.9 of [17] that every locally compact, Lindelöf space X that is C-compact in A(X) must be compact, and every locally compact, non-Lindelöf space X is C-compact in A(X). Hence, $\rho(X, A(X)) \leq \ell(X)$ for every locally compact, non-Lindelöf space X. For locally compact spaces, we have the next results.

Lemma 2.3. Let X be a locally compact, non-Lindelöf space. Then $\rho(X, A(X))$ exists, X is C_{γ} -compact in A(X) for every $\gamma < \ell(X)$ and X cannot be $C_{\ell(X)}$ -compact in A(X).

Proof. Since X is not Lindelöf, we have that $\ell(X) > \omega$. Let $\gamma < \ell(X)$. If X is not C_{γ} -compact in A(X), then $\{\infty\} = \bigcap_{\xi < \gamma} V_{\xi}$, where V_{ξ} is an open subset of A(X) for each $\xi < \gamma$, by Theorem 1.2. Hence, $X = \bigcup_{\xi < \gamma} (A(X) \setminus V_{\xi})$ and this implies that $\ell(X) \leq \gamma$, but this is a contradiction. It is evident that X cannot be $C_{\ell(X)}$ -compact in A(X). \Box

Corollary 2.4. Let X be a locally compact space and let α be a cardinal. The following are equivalent:

(1) $\ell(X) \leq \alpha$;

(2) either X is compact or X is not C_{α} compact in A(X).

Corollary 2.5. Let X be a locally compact, non-Lindelöf space and let $\rho(X, A(X)) = \alpha$. The following assertions hold:

- (1) $\ell(X) = \alpha^+$ if and only if X is C_{α} -compact in A(X).
- (2) $\ell(X) = \alpha$ if and only if X is not C_{α} -compact in A(X).

We remind the reader that a space X is said to be *almost-compact* if $|\beta(X) \setminus X| \leq 1$. We have that if X is an almost-compact space, then X is locally compact, all its powers are pseudocompact and $\rho(X) = \rho(X, A(X))$. We shall give an example of a locally compact space Z such that $\rho(Z) = \rho(Z, A(Z))$ and Z is not almost-compact (see remark after Corollary 2.12). It is well known that if α is a cardinal and $cf(\alpha) > \omega$, then $[0, \alpha)$ is a countably compact space and $\beta([0, \alpha)) = [0, \alpha]$; that is, $[0, \alpha)$ is almost-compact. We also have that $\ell([0, \alpha)) = cf(\alpha)$ for every cardinal α . As a consequence of this fact and Lemma 2.3, we have:

Theorem 2.6. Let α be a cardinal with $cf(\alpha) > \omega$. Then $[0, \alpha)$ is γ -pseudocompact for all $\omega \leq \gamma < cf(\alpha)$ and it is not $cf(\alpha)$ -pseudocompact.

Corollary 2.7. For every cardinal α , we have that $\rho([0, \alpha^+)) = \alpha$.

Proof. By Theorem 2.6, we have that $[0, \alpha^+)$ is α -pseudocompact and since $w([0, \alpha^+)) = \alpha^+$, we must have that $\rho([0, \alpha^+)) = \alpha$. \Box

Corollary 2.8. If γ and α are cardinals with $\gamma < \alpha$, then $[0, \gamma^+)$ is γ -pseudocompact and is not α -pseudocompact.

An example which separates the class of C_{α} -compact subsets for different cardinal numbers α in the context of topological groups can be found as follows: let X be a space. We denote by F(X) the free topological group generated by X (see [9, 2.3 and 9.20]). It is known that X is a closed C-embedded subspace of F(X). Let α and γ be cardinal numbers with $\alpha < \gamma$. Let X be an α -pseudocompact space which is not γ -pseudocompact. Since X is a closed C-embedded subset of F(X), X is a closed C_{α} -compact subset of F(X) which is not γ_{γ} -pseudocompact.

Corollary 2.9. For every limit cardinal number α with $cf(\alpha) > \omega$, we have that

 $\rho([0,\alpha)) = \mathrm{cf}(\alpha).$

Proof. We know that $\beta([0,\alpha)) = [0,\alpha]$. According to Theorem 2.6, $[0,\alpha)$ cannot be $C_{cf(\alpha)}$ -compact in $[0,\alpha]$ and hence $\rho([0,\alpha]) \leq cf(\alpha)$. It then follows from Theorem 2.6 that $\rho([0,\alpha)) = cf(\alpha)$. \Box

The proof of the next corollary is left to the reader.

Corollary 2.10. Let α be a cardinal with $cf(\alpha) > \omega$. Then, we have:

(1) $\alpha = \gamma^+$ for some cardinal γ if and only if $[0, \alpha)$ is $\rho([0, \alpha))$ -pseudocompact;

(2) α is weakly-inaccessible if and only if $\rho([0, \alpha)) = \alpha$.

We turn now to consider the next cardinal function which is somehow related to that of Definition 2.1 and is useful in the study of the cardinal function ρ in the class of locally compact spaces.

Definition 2.11. Let X be a space. If B is a subset of X, then we define:

$$\rho^*(B, X) = \begin{cases} \infty & \text{if } B \text{ is compact,} \\ \min\{\alpha: B \text{ is not } C_\alpha\text{-compact in } X\} & \text{if } B \text{ is not compact.} \end{cases}$$

Observe that a subset A of a space X is not C-compact in X if and only if $\rho^*(A, X) = \omega$, and if B is C-compact in X, then $\rho(B, X) \leq \rho^*(B, X) \leq \rho(B, X)^+$. If X is a space, then we write $\rho^*(X) = \rho^*(X, X) = \rho^*(X, \beta(X))$. If $f: X \to Y$ is a continuous surjection, then $\rho^*(A, X) \leq \rho^*(f(A), Y)$ for every $A \subseteq X$ such that f(A) is not compact. We also have that if X is any noncompact space, then $\rho^*(X)$ exists and $\rho^*(X) \in \rho^*(X, B(X))$ for every compactification B(X) of X.

Corollary 2.12. If X is a locally compact, noncompact space, then

 $\rho^*(X, A(X)) = \ell(X).$

Proof. If X is Lindelöf then, by Corollary 3.8 of [17], we have that X is not C-compact in A(X) and so $\rho^*(X) = \omega = \ell(X)$. Now assume that X is not Lindelöf. Since X is G_{γ} -dense in A(X) for all $\gamma < \ell(X)$, $\ell(X) \leq \rho^*(X, A(X))$ and, by Lemma 2.3, $\ell(X) = \rho^*(X, A(X))$. \Box

For $1 \leq n < m < \omega$, we have that $Z = [0, \omega_n) \oplus [0, \omega_m)$ is a locally compact, noncompact space that satisfies $\rho(Z) = \omega_{n-1}$, $\rho^*(Z) = \omega_n$ and $\ell(Z) = \omega_m$. If $Z = [0, \omega_n) \oplus [0, \omega_n)$, for $n \in \omega$, then Z is a locally compact, non-almost-compact space with $\rho(Z) = \rho(Z, A(Z))$.

A space X that is C-compact in some of its compactifications is called *weakly-pseudo-compact*; several properties of these spaces are investigated in [17]. It is pointed out in Corollary 2.9 of [17] that a locally compact space X is weakly-pseudocompact if and only if X is either compact or it is not Lindelöf.

Theorem 2.13, Let X be a noncompact space. Then

- (1) $\rho^*(X, B(X)) \leq \ell(X)$ for every compactification B(X) of X;
- (2) If X is a weakly-pseudocompact space, then there is a compactification B(X) of X for which

$$\rho(X, B(X)) \leq \rho^*(X, B(X)) \leq \ell(X).$$

Proof. (1) Let B(X) be a compactification of X. Fix $x \in B(X) \setminus X$, then we may find a $G_{\ell(X)}$ -subset H such that $x \in H$ and $H \cap X = \emptyset$. Hence, X cannot be $G_{\ell(X)}$ -dense in B(X) and so $\rho^*(X, B(X)) \leq \ell(X)$.

(2) Let B(X) be a compactification of X witnessing that X is weakly-pseudocompact. By clause (1), we have that $\rho(X, B(X)) \leq \rho^*(X, B(X)) \leq \ell(X)$. \Box Observe that $\rho^*(\alpha) = \omega$ and $\ell(\alpha) = \alpha$ for all cardinal numbers α .

Theorem 2.14. For a locally compact, noncompact space X, the following are equivalent:

(1) $\rho^*(X) = \ell(X)$; (2) $\rho^*(X, B(X)) = \ell(X)$ for all compactification B(X) of X.

Proof. (1) \Rightarrow (2). Let B(X) be a compactification of X. Then we have that

$$\ell(X) = \rho^*(X) \leqslant \rho^*(X, B(X)) \leqslant \rho^*(X, A(X)) = \ell(X),$$

the last equality follows from Corollary 2.12.

(2) \Rightarrow (1). This is evident. \Box

Every almost-compact space satisfies the conclusion of Theorem 2.14. The space of the real numbers \mathbb{R} is an example of a locally compact, non-almost-compact space with $\rho^*(\mathbb{R}) = \ell(\mathbb{R}) = \omega$.

A better upper bound for the degree of pseudocompactness is the realcompactness number of a space X which was introduced in [1] and it can be defined as follows: the realcompactness number of a space X is

$$q(X) = \min \{ \alpha \ge \omega : \ X = G_{\alpha} \operatorname{-cl}_{\beta(X)}(X) \}.$$

We should remark that a space X is compact iff X is q(X)-pseudocompact iff X is α -pseudocompact and $q(X) \ge \alpha$.

Theorem 2.15. For every noncompact space X, we have

 $\rho^*(X) \leqslant q(X) \leqslant \ell(X).$

Hence, if X is a noncompact, pseudocompact space, then $\rho(X) \leq q(X)$. If X is almost-compact and noncompact, then $\rho^*(X) = q(X)$. If X is not realcompact and not pseudocompact, then $\rho^*(X) = \omega < q(X)$. For an arbitrary cardinal α , if X is pseudocompact and not α -pseudocompact, and Y is α -pseudocompact and noncompact, then $Z = X \oplus Y$ is a pseudocompact space such that $\rho^*(Z) \leq \alpha < q(Z)$.

The Isbell–Mrówka spaces are defined by means of an almost disjoint (AD) family of infinite subsets of ω as follows: if \mathcal{A} is an AD family, then the Isbell–Mrówka space $\Psi(\mathcal{A})$ consists of the underlying set $\mathcal{A} \cup \omega$, the points of ω are isolated while if $x \in \mathcal{A}$, a basic neighborhood of x has the form $\{x\} \cup \mathcal{A}$ where \mathcal{A} is a cofinite subset of x. It is shown in [20, 5.I(5)], that $\Psi(\mathcal{A})$ is pseudocompact iff \mathcal{A} is a maximal almost disjoint (MAD) family. It is easy to prove that if \mathcal{A} is a MAD family, then $\ell(\Psi(\mathcal{A})) = |\mathcal{A}|$ and hence $\rho(\Psi(\mathcal{A})) \leq \rho^*(\Psi(\mathcal{A})) \leq |\mathcal{A}|$. Hence, $\Psi(\mathcal{A})$ is never $|\mathcal{A}|$ -pseudocompact and if we assume CH, then $\rho(\Psi(\mathcal{A})) = \omega$ for every MAD family \mathcal{A} . We know that there are MAD families \mathcal{A} for which $\Psi(\mathcal{A})$ has only one compactification (a construction of this kind of MAD families is available in [4.27,35]). If $\beta(\Psi(\mathcal{A})) = A(\Psi(\mathcal{A})$ then, by Corollary 2.12, $\rho^*(\Psi(\mathcal{A})) = \ell(\Psi(\mathcal{A})) = |\mathcal{A}|$ and hence $\Psi(\mathcal{A})$ is α -pseudocompact for every $\omega \leq \alpha < |\mathcal{A}|$.

150

3. Uniform spaces and topological groups

In this section, we will study the behavior of the product of C_{α} -compact subsets of topological groups. Our principal tool is the theory of uniform spaces. All the uniformities considered in this section are compatible. We shall denote the completion of a uniform space (X, \mathcal{U}) by $(\hat{X}, \hat{\mathcal{U}})$ (see [15, Theorem 8.3.12]). It is known that if a space X is topologically complete, then $cl_X(A)$ is compact for every bounded subset A of X.

Theorem 3.1. Let A be a bounded subset of a uniform space (X, U) and let (\hat{X}, \hat{U}) be the completion of (X, U). The following assertions are equivalent:

- (1) A is C_{α} -compact in \hat{X} .
- (2) A is C_{α} -compact in $\operatorname{cl}_{\widehat{\mathcal{C}}}(A)$.
- (3) A is G_{α} -dense in $\operatorname{cl}_{\widehat{X}}(\widehat{A})$.
- (4) f[A] is a compact subset of R^α for every uniformly continuous function from X into R^α.

Proof. (1) \Rightarrow (2). Let $f: cl_{\widehat{X}}(A) \to \mathbb{R}^{\alpha}$ be a continuous function such that f[A] is not compact. Since $cl_{\widehat{X}} A$ is compact in $(\widehat{X}, \widehat{\mathcal{U}})$, there exists a continuous function $g: \widehat{X} \to \mathbb{R}^{\alpha}$ such that $g|_{A} = f|_{A}$ and so A is not C_{α} -compact in \widehat{X} .

(2) \Rightarrow (3). Suppose that there exists a set $\{Z_{\xi}: \xi < \alpha\}$ of zero sets in $\operatorname{cl}_{\widehat{X}}(A)$ such that $\bigcap_{\xi < \alpha} Z_{\xi} \cap A = \emptyset$ with $\bigcap_{\xi < \alpha} Z_{\xi} \neq \emptyset$. Let f_{ξ} be a continuous function from $\operatorname{cl}_{\widehat{X}}(A)$ into \mathbb{R} such that $Z_{\xi} = f_{\xi}^{-1}(0)$, for each $\xi < \alpha$. Consider the function $f: \operatorname{cl}_{\widehat{X}}(A) \to \mathbb{R}^{\alpha}$ defined by $f(x) = (f_{\xi}(x))_{\xi < \alpha}$ for every $x \in \operatorname{cl}_{\widehat{X}}(A)$. Pick $y \in \bigcap_{\xi < \alpha} Z_{\xi}$. Then

$$f(y) \in f[\operatorname{cl}_{\widehat{X}}(A)] \setminus f[A].$$

Thus, f[A] is not compact.

(3) \Rightarrow (4). Let f be a uniformly continuous function from X into \mathbb{R}^{α} . Let \hat{f} be the uniform continuous extension of f to \hat{X} . Pick $y \in \hat{f}[cl_{\hat{X}}(A)] \setminus f[A]$. Since every point in \mathbb{R}^{α} is a G_{α} -point, $f^{-1}(y) \cap cl_{\hat{Y}}(A)$ is a G_{α} -subset in $cl_{\hat{Y}}(A)$ which does not meet A.

(4) \Rightarrow (1). Let f be a continuous function from \hat{X} into \mathbb{R}^{α} . We have that the function $f|_{c|_{\hat{X}}(A)}$ is uniformly continuous with respect to the uniform structure induced by \hat{U} on $c|_{\hat{X}}(A)$, because $c|_{\hat{X}}(A)$ is compact. By Katětov's theorem [25] (also see [15, 8.5.6(b)]) there exists a uniformly continuous function g from \hat{X} into \mathbb{R}^{α} such that $g|_{c|_{\hat{X}}(A)} = f|_{c|_{\hat{X}}(A)}$. Since $g|_X$ is uniformly continuous, g[A] = f[A] is compact. \Box

The above theorem shows that it is not necessary to consider all continuous real-valued functions to study some properties of C_{α} -compact subsets in uniform complete spaces. Actually, it suffices to consider functions that are uniformly continuous. On the other hand, let α be an uncountable cardinal and

 $\mathcal{U} = \{\Delta: \Delta \text{ is a finite cover of } \alpha, \text{ every element of } \Delta \text{ is either finite or cofinite}\}.$ Then, α is not *C*-compact in the uniform space (α, \mathcal{U}) and every uniformly continuous $f: (\alpha, \mathcal{U}) \to \mathbb{R}$ sends α onto a compact subset of \mathbb{R} . The referee communicated to the authors the following example due to A.W. Hager. **Example 3.2.** An example of a bounded, non-C-compact subset B of a uniform space (X, \mathcal{U}) such that B is a C-compact subset of $(\widehat{X}, \widehat{\mathcal{U}})$ is the following:

Let $X = [0, \omega_1) \times \beta(\omega_1) \cup \{\omega_1\} \times \omega_1$, and let $B = \{\omega_1\} \times \omega_1 \subseteq X$. Since X is pseudocompact, all of its subsets (in particular, B) are bounded in X. To see that B is not C-compact in $\beta(X) = [0, \omega_1] \times \beta(\omega_1)$ (hence, B is not C-compact in X) let f be a continuous function on $\beta(\omega_1)$ with $f[\omega_1]$ not compact, and define $F: \beta(X) \to \mathbb{R}$ by F(x, y) = f(x) for all $(x, y) \in \beta(X)$; then $F \mid_X$ is continuous on X, and $F[B] = F[\omega_1]$ is not compact. We note that X is locally compact. Let U be the uniformity on X induced from its one-point compactification. Then, we have that every real-valued function f uniformly continuous on X with respect to U has a continuous extension \hat{f} to the onepoint compactification $A(X) = X \cup \{\infty_X\}$. The one-point compactification A(B) of B is $B \cup \{\infty_B\} = B \cup \{\infty_X\}$, so $f[B] = \widehat{f}[B]$ is compact since B is C-compact in A(B).

Lemma 1.3 of [11] can be generalized as follows:

Lemma 3.3. Let α be a cardinal and let A_i be a subset of a nonempty space X_i for $i \in I$. Then A_i is G_{α} -dense in X_i , for all $i \in I$ if and only if $\prod_{i \in I} A_i$ is G_{α} -dense in $\prod_{i \in I} X_i$.

The following two corollaries are immediate consequences of Theorem 3.1 and Lemma 3.3.

Corollary 3.4. Let $\{(X_i, \mathcal{U}_i): i \in I\}$ be a set of complete uniform spaces. Let B_i be a C_{α} -compact subset of X_i for each $i \in I$. Then $\prod_{i \in I} B_i$ is a C_{α} -compact subset of $\prod_{i \in I} X_i$. In particular, the product of C_{α} -compact subsets of topologically complete spaces X_i is again C_{α} -compact in the product of the spaces X_i .

Corollary 3.5. Let $\{X_i: i \in I\}$ be a set of topological spaces such that

$$\beta\bigg(\prod_{i\in I}X_i\bigg)=\prod_{i\in I}\beta X_i.$$

Then, $\prod_{i \in I} B_i$ is a C_{α} -compact subset of $\prod_{i \in I} X_i$ whenever B_i is a C_{α} -compact subset of X_i for every $i \in I$.

In [21], I. Glicksberg also gave the conditions for the pseudocompactness of a product in terms of countable subproducts: a product of nonempty spaces is pseudocompact iff each countable subproduct is pseudocompact. It is then natural to ask whether there is the C_{α} -compact version of Glicksberg's result. In the following theorem, we give a partial answer to this question. First, we state a lemma that was proved by W.W. Comfort and S. Negrepontis [12, Theorem 10.14].

Lemma 3.6. Let α be a cardinal, let $\{X_i: i \in I\}$ be a set of spaces with each $d(X_i) \leq \alpha$ and let $f: \prod_{i \in I} X_i \to Y$ be a continuous function with Y a space such that $w(Y) \leq \alpha$. Then, there is a subset J of I and a continuous function $g:\prod_{i\in J} X_i \to Y$ such that $|J| \leq \alpha$ and $g \circ \pi_J = f$, where $\pi_J:\prod_{i\in J} X_i \to \prod_{i\in J} X_i$ is the projection map.

Theorem 3.7. Let $\{X_i: i \in I\}$ be a set of spaces and let $B_i \subseteq X_i$ for every $i \in I$. If γ and α are cardinal numbers such that $\alpha \leq \gamma$ and $\sup\{d(X_i): i \in I\} \leq \gamma$, then $\prod_{i \in I} B_i$ is C_{α} -compact in $\prod_{i \in I} X_i$ if and only if $\prod_{i \in J} B_i$ is C_{α} -compact in $\prod_{i \in J} X_i$ for every $J \subseteq I$ with $|J| \leq \gamma$.

Proof. Let γ and α be cardinal numbers with $\alpha \leq \gamma$ and $\sup\{d(X_i): i \in I\} \leq \gamma$. We will only prove the sufficiency. Suppose that $\prod_{i \in J} B_i$ is C_{α} -compact in $\prod_{i \in J} X_i$ for every $J \subseteq I$ with $|J| \leq \gamma$. Let $f: \prod_{i \in I} X_i \to \mathbb{R}^{\alpha}$ be a continuous function. Since $w(\mathbb{R}^{\alpha}) = \alpha \leq \gamma$, by Lemma 3.6, there is a subset K of I and a continuous function

$$g: \prod_{i \in K} X_i \to \mathbb{R}^d$$

such that $|K| \leq \gamma$ and $g \circ \pi_K = f$, where

$$\pi_K \colon \prod_{i \in K} X_i \to \prod_{i \in K} X_i$$

is the projection map. By assumption,

$$g\left[\pi_{K}\left[\prod_{i\in I}B_{i}
ight]
ight]=g\left[\prod_{i\in K}B_{i}
ight]=f\left[\prod_{i\in I}B_{i}
ight]$$

is compact. This shows that $\prod_{i \in I} B_i$ is C_{α} -compact in $\prod_{i \in I} X_i$. \Box

We shall now study the C_{α} -compact subsets of topological groups. The next theorem generalizes Theorem 2 of [22]. Let G be a topological group, we denote by \mathcal{U}_L (respectively \mathcal{U}_{LR}) the left (respectively, two-sided) uniform structure on G. Let $(\overline{G}, \overline{\mathcal{U}_{LR}})$ denote the uniform completion of the uniform space (G, \mathcal{U}_{LR}) . It is known [30, Theorem 10.12(c)] that \overline{G} is a topological group.

Theorem 3.8. Let B be a bounded subset of a topological group G. The following assertions are equivalent:

- B is C_α-compact in G;
- (2) B is G_{α} -dense in $cl_Y B$, with (Y, V) a uniform space such that $G \subseteq Y$ and $V|_G \ge U_L$;
- (3) B is G_{α} -dense in $\operatorname{cl}_{\overline{G}}(B)$;
- (4) for every uniform continuous function f from (G, \mathcal{U}_{LR}) into \mathbb{R}^{α} , f[B] is compact.

Proof. The proof of the equivalences among (1), (2) and (3) is similar to that of Theorem 2 of [22].

(3) \Rightarrow (4). This implication follows from (3) \Rightarrow (4) of Theorem 3.1.

(4) \Rightarrow (1). Suppose there exists $f: G \rightarrow \mathbb{R}^{\alpha}$ such that f[B] is not compact. By [36, Corollary 2.29], $f|_B$ is uniformly continuous with respect to the uniform structure

induced by $\mathcal{U}_{\mathcal{LR}}$ on *B*. So, we can extend *f* to a continuous function to $cl_{\overline{G}}(B)$ which is the completion of *B* with respect to $\mathcal{U}_{\mathcal{LR}}$. By Katětov's theorem [25], there exists a uniformly continuous function *g* from \mathcal{G} into \mathbb{R}^{α} such that $g|_{B} = f|_{B}$. Thus, g[A] is not compact, a contradiction. \Box

We shall slightly generalize Corollary 3 of [22] and Theorem 1.4 of [13]. We need some notation. For a set $\{G_i: i \in I\}$ of topological groups, we denote by \mathcal{U}_{LR}^i the two-sided uniform structure on G_i for all $i \in I$. If $G = \prod_{i \in I} G_i$ and \mathcal{U}_{LR} is the two-sided uniformity on G, it is known that $\mathcal{U}_{LR} = \prod_{i \in I} \mathcal{U}_{LR}^i$ [30, Proposition 3.35].

Corollary 3.9. Let $\{G_i: i \in I\}$ be a set of topological groups and let A_i be a C_{α} -compact subset of G_i for all $i \in I$. Then $\prod_{i \in I} A_i$ is a C_{α} -compact subset of $\prod_{i \in I} G_i$.

We end this section with an example. If G is a totally bounded, nonpseudocompact topological group (for the definition of totally bounded group see [9, Section 1]), then every real-valued function that is uniformly continuous with respect to the left uniformity U_L on G is bounded on G (see [9, 1.13]), and there is a continuous real-valued function that is not bounded on G. The maximal totally bounded topological group topology on an infinite Abelian group is not pseudocompact (for a proof of this fact we refer the reader to [9, 9.13]).

4. Topological products and ∑-products

We start with an estimation of the degree of pseudocompactness of a product of a set of topological spaces.

Theorem 4.1. Let A_i be a subset of X_i for $i \in I$. Then,

$$\rho^*\left(\prod_{i\in I}A_i,\prod_{i\in I}X_i\right)\leqslant\min\left\{\rho^*(A_i,X_i):\ i\in I\right\}.$$

Proof. Fix $j \in I$. Since A_j is not $C_{\rho^*(A_j,X_j)}$ -compact, we have that $\prod_{i \in I} A_i$ is not $C_{\rho^*(A_j,X_j)}$ -compact in $\prod_{i \in I} X_i$, and hence $\rho^*(\prod_{i \in I} A_i, \prod_{i \in I} X_i) \leq \rho^*(A_j, X_j)$. \Box

We remark that if X is a pseudocompact space with $X \times X$ is not pseudocompact, then $\rho^*(X) > \omega$ and $\rho^*(X \times X) = \omega$ (for an example of such a space see [20]).

Theorem 4.2. Let A_i be a C-compact subset of X_i , for each $i \in I$. If $\prod_{i \in I} A_i$ is C-compact in $\prod_{i \in I} X_i$, then,

$$\rho\bigg(\prod_{i\in I}A_i,\prod_{i\in I}X_i\bigg)\leqslant\min\big\{\rho(A_i,X_i):\ i\in I\big\}.$$

Proof. Let $\alpha = \rho(\prod_{i \in I} A_i, \prod_{i \in I} X_i)$ and $\gamma = \min\{\rho(A_i, X_i): i \in I\}$. Then, there is $k \in I$ such that $\gamma = \rho(A_k, X_k)$. Suppose that $\gamma < \alpha$. If there is a cardinal κ such that

 $\gamma < \kappa < \alpha$, then $\prod_{i \in I} A_i$ is G_{κ} -dense in $\operatorname{cl}_{\prod_{i \in I} X_i}(\prod_{i \in I} A_i)$. Hence, by Lemma 3.3, A_k is G_{κ} -dense in $\operatorname{cl}_{\beta(X_k)}(A_k)$ and so $\kappa \leq \gamma$, which is a contradiction. Thus, $\alpha = \gamma^+$. Then, we have that $\prod_{i \in I} A_i$ is C_{α} -compact in $\prod_{i \in I} X_i$. By arguing as the previous paragraph, we obtain that A_k is C_{α} -compact in X_k , but this is impossible. Therefore, $\alpha \leq \gamma$. \Box

We do not know whether the equality must hold in Theorem 4.2. Next, we generalize Corollary 2.12 of [17]: the proof follows from Lemma 3.3 and Glicksberg's theorem [21] (see [37, 8.25]).

Theorem 4.3. Let A_i be a C-compact subset of X_i , for each $i \in I$. If $\prod_{i \in I} X_i$ is pseudocompact, then,

$$\rho\bigg(\prod_{i\in I}A_i,\prod_{i\in I}X_i\bigg)=\min\big\{\rho(A_i,X_i):\ i\in I\big\}.$$

Example 4.4. Let $X = [0, \omega_1) \times [0, \omega_1)$. Then, X is a locally compact space that is not almost-compact and $\rho(X) = \rho(X, A(X))$. If α is a regular cardinal and $\omega_1 \leq \alpha$, then $\rho([0, \omega_1) \times [0, \alpha)) = \omega$ and $\ell([0, \omega_1) \times [0, \alpha)) = \alpha$.

We now estimate the cardinal function ρ on some subspaces of a topological product of a set of spaces. The following theorem plays a very important role in studying the function ρ on subspaces of products (it is taken from [3]). To state the theorem we need the following terminology: let X be a space, hd(X) and $\chi(X)$ stand for the hereditary density and the character of X, respectively; a set \mathcal{V} of open subsets of X is a π -base of a continuous function $f: X \to Y$ ut the point $x \in X$ if for every $V \in \mathcal{N}(f(x))$, $x \in cl(\bigcup \{U \in \mathcal{V}: f(U) \subseteq V\})$;

 $\pi\chi(f,x) = \min\{|\mathcal{V}|: \ \mathcal{V} \text{ is a } \pi\text{-base of } f \text{ at } x\};\$

and the π -character of f is $\pi\chi(f) = \sup\{\pi\chi(f, x): x \in X\}$. Notice that $\operatorname{hd}(X) \leq w(X)$ and if $f: X \to Y$ is continuous, then $\pi\chi(f) \leq \chi(Y)$. If $X = \prod_{i \in I} X_i$ and $K \subseteq I$, then $\pi_K: \prod_{i \in I} X_i \to \prod_{i \in K} X_i$ will denote the projection mapping.

Theorem 4.5 (Arkhangel'skii factorization theorem [3]). Let $X = \prod_{i \in I} X_i$ and let A be a dense subset of $X = \prod_{i \in I} X_i$. If $f: A \to Y$ is a continuous function and γ is a cardinal number such that

- (1) $\operatorname{hd}(\pi_K(A)) \leq \gamma$ for all $K \in [I]^{\leq \gamma}$;
- (2) there is a dense subset D of A such that πχ(f,x) ≤ γ for every x ∈ D, then there is L ∈ [I]^{≤γ} and a continuous function φ: π_L(A) → Y for which φ ∘ π_L = f.

Corollary 4.6. Let $X = \prod_{i \in I} X_i$ such that $w(X_i) \leq \gamma \leq |I|$ for all $i \in I$. If A is a dense subset of X and $f : A \to Y$ is a continuous function with $\chi(Y) \leq \gamma$, then there are $L \subseteq I$ such that $|L| \leq \gamma$ and a continuous function $\phi : \pi_L(A) \to Y$ such that $\phi \circ \pi_L = f$.

Proof. For each $K \subseteq I$ with $|K| \leq \gamma$, we have that $w(\prod_{i \in K} X_i) \leq \gamma$ and hence, $hd(\pi_K(A)) \leq \gamma$. The conclusion now follows from the fact that $\chi(Y) \leq \gamma, \pi\chi(f) \leq \gamma$ and Factorization Theorem 4.5. \Box

From Corollary 4.6, we obtain the next generalization of Lemma 4 from [14]. For $\alpha \ge \omega$, we say that $Y \subseteq \prod_{i \in I} X_i$ is α -dense if $\pi_J(Y) = \prod_{i \in J} X_i$ for all $J \in [I]^{\leq \alpha}$.

Lemma 4.7. Let α be a cardinal and let $X = \prod_{i \in I} X_i$ be a product of compact spaces of weight not bigger than α with $\alpha \leq |I|$. Then, for a dense subset Y of X the following are equivalent.

- (1) Y is α -pseudocompact;
- (2) Y is C_{α} -compact in X;
- (3) Y is α -dense in X.

Proof. (1) \Rightarrow (2). This is evident.

(2) \Rightarrow (3). Let $J \in [I]^{\leq \alpha}$. Then $\pi_J(Y)$ is dense and C_{α} -compact in $\prod_{i \in J} X_i$. Since $w(\prod_{i \in J} X_i) \leq \alpha$, by Theorem 1.2(6), $\pi_J(Y)$ must be compact and so $\pi_J(Y) = \prod_{i \in J} X_i$.

(3) \Rightarrow (1). Let $f: Y \to \mathbb{R}^{\alpha}$ be a continuous function. By Corollary 4.6, there are $J \in [I]^{\leq \alpha}$ and a continuous function $\phi: \pi_J(Y) \to \mathbb{R}^{\alpha}$ such that $\phi \circ \pi_J = f$. The function ϕ is continuous on the compact space $\pi_J(Y) = \prod_{i \in J} X_i$, so f(Y) is compact. \Box

By using filters, we may generalize the concept of \sum -product as follows:

Definition 4.8. Let α be a cardinal, \mathcal{F} a filter on α , $X = \prod_{\xi < \alpha} X_{\xi}$ and $z \in X$. Then we define the $\sum_{\mathcal{F}}$ -product of X based at z by $\sum_{\mathcal{F}} (z) = \{x \in X: \{\xi < \alpha: x_{\xi} = z_{\xi}\} \in \mathcal{F}\}.$

It is not hard to see that if \mathcal{F} is a filter on α , then $\sum_{\mathcal{F}}(z) = \bigcap\{\sum_{p}(z): p \in \beta(\alpha) \text{ and } \mathcal{F} \subseteq p\}$, for every $z \in \prod_{\xi < \alpha} X_{\xi}$. We have that if $\gamma \leqslant \alpha$, then $\sum_{\mathcal{F}, \{\alpha\}}(z) = \sum_{\gamma}(z)$, where $\sum_{\gamma}(z) = \{x \in X: |\xi < \alpha: x_{\xi} \neq z_{\xi}\}| < \gamma\}$ is the original definition of the \sum_{γ} product based at $z \in X = \prod_{\xi < \alpha} X_{\xi}$. Hence, for every filter \mathcal{F} on α with $\mathcal{F}_{\gamma}(\alpha) \subseteq \mathcal{F}$, we obtain that $\sum_{\gamma}(z) \subseteq \sum_{\mathcal{F}}(z)$ for every $z \in \prod_{\xi < \alpha} X_{\xi}$. Notice that if $\omega \leqslant \alpha \leqslant \gamma$, then the \sum_{γ} -product of $\prod_{i \in I} X_i$ is α -dense.

Lemma 4.9. Let \mathcal{F} be a filter on α , let $X = \prod_{\xi < \alpha} X_{\xi}$ be a product of spaces having more than one point and let $z \in \prod_{\xi < \alpha} X_{\xi}$. Then $\sum_{\mathcal{F}} (z)$ is a dense (proper) subset of X if and only if $\mathcal{F}_{\omega}(\alpha) \subseteq \mathcal{F}$.

Proof. Necessity. Assume that there is $A \in \mathcal{F}_{\omega}(\alpha) \setminus \mathcal{F}$. Put $\alpha \setminus A = \{\xi_i: i < m\}$. Then, we have that $B \setminus A \neq \emptyset$ for all $B \in \mathcal{F}$. Let $V = \bigcap_{i < m} \pi_{\xi_i}^{-1}(V_i)$, where V_i is a nonempty open subset of X_{ξ_i} such that $z_{\xi_i} \notin V_i$ for every $i < m < \omega$. By assumption, there is $x \in V \cap \sum_{\mathcal{F}} (z)$. Since $\{\xi < \alpha: x_{\xi} = z_{\xi}\} \in \mathcal{F}$, we can find k < m so that $x_{\xi_k} = z_{\xi_k}$, but this is impossible because $x_{\xi_k} \in V_k$ and $z_{\xi_k} \notin V_k$.

Sufficiency. Let $V = \bigcap_{j < n} \pi_{\xi_j}^{-1}(V_j)$, where $\xi_j < \alpha$ and $V_j \neq \emptyset$ is an open subset of X_{ξ_j} for every $j < n < \omega$. Since $\mathcal{F}_{\omega}(\alpha) \subseteq \mathcal{F}$, $A = \alpha \setminus \{\xi_j: j < n\} \in \mathcal{F}$. It then follows that $V \cap \sum_{\mathcal{F}} (z) \neq \emptyset$. \Box

We turn now to the principal result concerning \sum_{r} -products.

Theorem 4.10. Let $X = \prod_{\xi < \alpha} X_{\xi}$ be a product of compact spaces having more than one point and $w(X_{\xi}) \leq \gamma \leq \alpha$ for all $\xi < \alpha$. Let $z \in X$ and let \mathcal{F} be a filter on α such that $\sup\{\kappa < \alpha: \mathcal{F}_{\kappa}(\alpha) \subseteq \mathcal{F}\} = \gamma$. Then, the following are equivalent:

- (1) $\kappa < \gamma$;
- (2) $\sum_{\mathcal{F}}(z)$ is κ -pseudocompact;
- (3) $\overline{\sum}_{\mathcal{F}}(z)$ is C_{κ} -compact in X.

In order to prove Theorem 4.10 we need the following lemmas.

Lemma 4.11. Let α be an uncountable cardinal, $\omega < \gamma \leq \alpha$, $X = \prod_{\xi < \alpha} X_{\xi}$ a product of compact spaces having more than one point and $z \in X$. If $w(X_{\xi}) \leq \gamma$ for all $\xi < \alpha$, then

- (1) $\sum_{\gamma}(z)$ is κ -pseudocom_i act for all $\omega \leq \kappa < \gamma$ and it is not γ -pseudocompact; and
- (2) if \mathcal{F} is a filter on α with $\mathcal{F}_{\gamma}(\alpha) \subseteq \mathcal{F}$, then $\sum_{\mathcal{F}}(z)$ is κ -pseudocompact for all $\omega \leq \kappa < \gamma$, and if $\gamma \in \mathcal{F}$, then $\gamma \leq \rho(\sum_{\tau} (z))^+$.

Proof. (1) In virtue of Corollary 10.7(b) of [12], $\beta(\sum_{\gamma}(z)) = X$. Let $\omega \leq \kappa < \gamma$. We have that the space $\sum_{\gamma}(z)$ is a dense subset of X and for each $K \in [I]^{\leq \kappa}$, $\pi_K(\sum_{\gamma}(z)) = \prod_{\xi \in K} X_{\xi}$. By Lemma 4.7, $\sum_{\gamma}(z)$ is κ -pseudocompact. Now, for each $\xi < \gamma$ choose $x_{\xi} \in X_{\xi} \setminus z_{\xi}$. Since $w(X_{\xi}) \leq \gamma$ for all $\xi < \gamma$, then $G = \bigcap_{\xi < \gamma} \pi^{-1}(x_{\xi})$ is a G_{γ} -set in X which does not meet $\sum_{\gamma}(z)$. Thus, $\sum_{\gamma}(z)$ is not γ -pseudocompact.

(2) Since $\sum_{\gamma}(z) \subseteq \sum_{\mathcal{F}}(z)$, by clause (1), $\sum_{\mathcal{F}}(z)$ is κ -pseudocompact for all $\omega \leq \kappa < \gamma$. Assume that $\gamma \in \mathcal{F}$ and that $\rho(\sum_{\mathcal{F}}(z)) < \alpha$. Let $\gamma < \kappa < \alpha$ and let $j: \prod_{\xi < \kappa} X_{\xi} \rightarrow [0, 1]^{\kappa}$ be an embedding. First, observe that $\mathcal{G} = \{A \subset \kappa: A \in \mathcal{F}\}$ is a filter on κ . Then $\pi_{\kappa}[\sum_{\mathcal{F}}(z)] = \sum_{\mathcal{G}}(y)$, where $y = \pi_{\kappa}(z)$. It follows from Lemma 4.9 that $\sum_{\mathcal{G}}(y)$ is not compact since $\mathcal{F}_{\gamma}(\kappa) \subseteq \mathcal{G}$. Hence, $j[\sum_{\mathcal{G}}(y)]$ is not compact in $[0, 1]^{\kappa}$. So, $\sum_{\mathcal{F}}(z)$ is not κ -pseudocompact. Therefore, $\gamma \leq \rho(\sum_{\mathcal{F}})(z)^{+}$. \Box

Lemma 4.12. Let $X = \prod_{\xi < \alpha} X_{\xi}$ be a product of compact spaces having more than one point and weight $\leq \gamma \leq \alpha$. Let $z = (z_{\xi})_{\xi < \alpha} \in X$ and let p be an ultrafilter on α such that $\sup\{\kappa < \alpha: \mathcal{F}_{\kappa}(\alpha) \subset p\} = \gamma$. Then, the following are equivalent:

- (1) $\kappa < \gamma$; (2) $\sum_{p}(z)$ is κ -pseudocompact;
- (3) $\sum_{p}(z)$ is C_{κ} -compact in X.

Proof. (1) \Rightarrow (2) is a consequence of Lemma 4.11 and (2) \Rightarrow (3) is evident. We only need to prove (3) implies (1). By hypothesis, $\mathcal{F}_{\gamma^+}(\alpha)$ is not contained in *p*. Choose

 $F \in \mathcal{F}_{\gamma^+}(\alpha) \setminus p$. Since $F \in \mathcal{F}_{\gamma^+}(\alpha)$ and p is an ultrafilter, $|\alpha \setminus F| \leq \gamma$ and $\alpha \setminus F \in p$. For each $\xi \in \alpha \setminus F$, let $x_{\xi} \in X_{\xi} \setminus \{z_{\xi}\}$. The set $G = \bigcap \{\pi_{\xi}^{-1}(x_{\xi}): \xi \in \alpha \setminus F\}$ is a G_{γ} -set in X which does not intersect $\sum_{p}(z)$. It follows from Theorem 1.2 that $\sum_{p}(z)$ is not C_{γ} -compact in X. \Box

Proof of Theorem 4.10. We only have to prove $(3) \Rightarrow (1)$. Let $A \in \mathcal{F}_{\gamma^+}(\alpha) \setminus \mathcal{F}$. Choose an ultrafilter p on α such that $\mathcal{F} \subset p$ and $A \in \mathcal{F}_{\gamma^+}(\alpha) \setminus p$. Now, by Lemma 4.11, we obtain that $\sum_p(z)$ is not C_{γ} -compact in X. Let $f: X \to \mathbb{R}^{\gamma}$ be a continuous function such that $f[\sum_p(z)]$ is not compact. Since $\sum_{\mathcal{F}}(z)$ is dense in $\sum_p(z)$, $f[\sum_{\mathcal{F}}(z)]$ is not compact. So, $\sum_{\mathcal{F}}(z)$ is not C_{γ} -compact in X. \Box

Corollary 4.13. Let α be a cardinal. Then,

- (1) if $\gamma < \alpha$, then \mathbb{R}^{α} contains a pseudocompact subspace Y such that $\rho(Y) = \gamma$;
- (2) if α is a limit, then \mathbb{R}^{α} contains a pseudocompact subspace Y such that $\rho(Y) = \alpha$;
- (3) if α is not a limit, then there is not a pseudocompact subspace Y of \mathbb{R}^{α} with $\rho(Y) = \alpha$.

It follows from Corollary 4.13(2) that there is a noncompact, pseudocompact space X with $\rho(X) = w(X)$.

We recall for the reader that a filter \mathcal{F} on a cardinal number α is said to be γ -complete, for $\gamma \leq \alpha$, if $\bigcap_{\xi < \kappa} A_{\xi} \in \mathcal{F}$ whenever $A_{\xi} \in \mathcal{F}$ for every $\xi < \kappa$ and $\kappa < \gamma$. Notice that a filter \mathcal{F} is not ω_1 -complete iff there is $\{A_n: n < \omega\} \subseteq \mathcal{F}$ such that $\bigcap_{n < \omega} A_n = \emptyset$ and $A_{n+1} \subseteq A_n$ for every $n < \omega$,

Theorem 4.14. Let α be an uncountable cardinal and let $X = \prod_{\xi < \alpha} X_{\xi}$ be a product of spaces having more than one point and $z \in X$. If \mathcal{F} is a filter on α which is not ω_1 -complete, then $\sum_{\mathcal{F}}(z)$ cannot be countably compact.

Proof. Fix $r \in X$ such that $r_{\xi} \neq z_{\xi}$ for all $\xi < \alpha$. For each $n < \omega$ define $y^n \in \sum_{\mathcal{F}} (z)$ by $y_{\zeta}^{\varepsilon} = z_{\xi}$ if $\xi \in A_n$ and $y^n = r_{\xi}$ otherwise. Suppose that $\{y^n: n < \omega\}$ has an accumulation point in $\sum_{\mathcal{F}} (z)$, say y. Set $A = \{\xi < \alpha: y_{\xi} = z_{\xi}\}$. Then, $A \in \mathcal{F}$. Pick $\zeta \in A$ and let V be an open subset of X_{ζ} with $z_{\zeta} \in V$ and $r_{\zeta} \notin V$. Let $m < \omega$ be such that $\zeta \notin A_m$. Then, $y^n \notin \pi_{\zeta}^{-1}(V)$ for every $m < n < \omega$, but this is a contradiction. \Box

Let $\omega < \gamma < \alpha$, let $X = \prod_{\xi < \alpha} X_{\xi}$ be a product of compact spaces having more than one point, $w(X_{\xi}) \leq \gamma$ for each $\xi < \alpha$ and $z \in X$. If \mathcal{F} is a filter on α satisfying the conditions of Theorem 4.14 and $\mathcal{F}_{\gamma}(\alpha) \subseteq \mathcal{F}$, then $\sum_{\mathcal{F}} (z)$ is a γ -pseudocompact space that is not countably compact. A very interesting question that remains unsolved is the following.

Question 4.15 (T. Retta [29]). For $\omega < \alpha$, are there α -pseudocompact spaces X and Y such that $X \times Y$ is not pseudocompact?³

³ This question has been answered in the negatively by S. García-Ferreira, M. Sanchis and S. Watson.

Acknowledgements

The authors are indebted to the referee for many helpful comments and suggestions. They also thank A.W. Hager for his permission to include Example 3.2 in this paper.

References

- A.V. Arkhangel'skii, Functional tightness, Q-spaces and τ-embeddings, Comment. Math. Univ. Carolin. 24 (1983) 105-120.
- [2] A.V. Arkhangel'skii, Function spaces in the topology of pointwise convergence, Russian Math. Surveys 39 (1984) 5–66.
- [3] A.V. Arkhangel'skii, Continuous mappings, factorization theorems and function spaces, Trans. Moscow Math. Soc. 47 (1985) 1–22.
- [4] A.I. Bashkirov, On Stone-Čech compactifications of Isbell spaces, Bull. Polish Acad. Sci. 27 (1979) 613-619.
- [5] R.L. Blair and M.A. Swardson, Spaces with an Oz, Stone-Čech compactification, Topology Appl. 36 (1990) 73-92.
- [6] J.L. Blasco, On μ-spaces and k_r-spaces, Proc. Amer. Math. Soc. 67 (1977) 179-186.
- [7] H. Buchwalter, Topologies et compactopologies, Publ. Dép. Math. 6 (1969) 1-74.
- [8] W.W. Comfor 'Utrafilters: some old and some new results, Bull. Amer. Math. Soc. 83 (1977) 417-455.
- [9] W.W. Comfort, Topological groups, in: K. Kunen and J. Vaughan, eds., Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) Chapter 24, 1143–1263.
- [10] W.W. Comfort and A.W. Hager, The projection mapping and other continuous functions on a product space, Math. Scand. 28 (1971) 77-90.
- [11] W.W. Comfort and S. Negrepontis, The ring C(X) determines the category of X, Proc. Amer. Math. Soc. 16 (1965) 1041–1045.
- [12] W.W. Comfort and S. Negrepontis, Chain Conditions in Topology, Cambridge Tracts in Math. 79 (Cambridge Univ. Press, 1982).
- [13] W.W. Comfort and K.A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966) 483–496.
- [14] B. Efimov and R. Engelking, Remarks on dyadic spaces II, Colloq. Math. 13 (1963) 181-197.
- [15] R. Engelking, General Topology, Sigma Ser. Pure Math. 6 (Heldermann, Berlin, 1989).
- [16] Z. Frolík, Applications of complete family of continuous functions to the theory of Q-spaces, Czechoslovak Math. J. 11 (1961) 115-133.
- [17] S. García-Ferreira and A. García-Maynez, On weakly-pseudocompact spaces, Houston J. Math. 20 (1990) 145–159.
- [18] S. García-Ferreira and M. Sanchis, On C-compact subsets, submitted.
- [19] A. García-Máynez, Generalizations of the concepts of closed function and C-embedded set, An. Inst. Mat. Univ. Nac. Autónoma México 24 (1984) 13-35.
- [20] L. Gillman and M. Jerison, Rings of Continuous Functions, Grad. Texts in Math. 43 (Springer-Verlag, Berlin, 1976).
- [21] I. Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959) 369-382.
- [22] S. Hernández and M. Sanchis, G_δ-open functionally bounded subsets in topological groups, Topology Appl. 53 (1993) 289-299.
- [23] H. Hewitt, Rings of real-valued continuous functions I, Trans. Amer. Math. Soc. 64 (1948) 54–99.
- [24] T. Isiwata, Mappings and spaces, Pacific J. Math. 20 (1967) 455-480.

160 S. García-Ferreira et al. / Topology and its Applications 77 (1997) 139-160

- [25] M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951) 73-84.
- [26] J.F. Kennison, m-pseudocompactness, Trans. Amer. Math. Soc. 104 (1962) 436-442.
- [27] S. Mrówka, Some set-theoretic construction in topology, Fund. Math. 94 (1977) 83-92.
- [28] N. Noble, Ascoli theorems and the exponential map, Trans. Amer. Math. Soc. 143 (1969) 393-411.
- [29] T. Retta, Some cardinal generalizations of pseudocompactness, Czechosłovak Math. J. 43 (1993) 385–390.
- [30] W. Roelcke and S. Dierolf, Uniform Structures on Topological Groups and their Quotients (McGraw-Hill, New York, 1981).
- [31] V. Saks and R.M. Stephenson Jr, Products of *M*-compact spaces, Proc. Amer. Math. Soc. 28 (1971) 279–288.
- [32] Y.M. Smirnov, On topological spaces, compact in a given interval of powers, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950) 155–178.
- [33] R.M. Stephenson Jr, Initially κ-compact and related spaces, in: K. Kunen and J. Vaughan, eds., Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984).
- [34] H. Tamano, A note on the pseudocompactness of the product of two space, Mem. Coll. Sci. Univ. Kyoto Ser. A 33 (1960) 225–230.
- [35] J. Terasawa, Spaces N∪R and their dimensions, Topology Appl. 11 (1980) 93-102.
- [36] M.G. Tkachenko, Compactness type properties in topological groups, Czechoslovak Math. J. 38 (1988) 324–341.
- [37] R.C. Walker, The Stone-Čech Compactification (Springer-Verlag, Berlin, 1974).