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Abstract 

For an infinite cardinal a ,  we say that a subset B of a space X is Ca-compact in X if for every 
continuous function f : X -~ II~ ~, f [B]  is a compact subset of II~ ~. This concept slightly generalizes 
the notion of a-pseudocompacmess introduced by J.F. Kennison: a space X is a-pseudocompact 
if X is Ca-compact in itself. If a = w, then we say C-compact instead of C~-compact and 
~v-pseudocompactness agrees with pseudocompactness. We generalize Tamano's theorem on the 
pseudocompactness of a product of two spaces as follows: let A C_ X and B C_ Y be such that 
A is z-embedded in X. Then the following three conditions are equivalent: (1) A x B is C~- 
compact in X x Y; (2) A and B are Ca-compact in X and Y, respectively, and the projection 
map ~r : X x Y ~ X is a za-map with respect to A x B and A; and (3) A and B are Co-compact 
in X and Y, respectively, and the projection map ~ ' : X  x Y -+ X is a strongly z~-map with 
respect to A x B and A (the z~-maps and the strongly z~-maps are natural generalizations of the 
z-maps and the strongly z-maps, respectively). The degree of C,~-compactuess of a C-compact 
subset B of a space X is defined by: p ( B ,  X )  = cx~ if B is compact, and if B is not compact, 
then p ( B ,  X )  = sup{a: B is Ca-compact in X}. We estimate the degree of pseudocompacmess 
of locally compact pseudocompact spaces, topological products and E-products. We also establish 
the relation between the pseudocompact degree and some other cardinal function's. In the context 
of uniform spaces, we show that if A is a bounded subset of a uniform space ~X,~/), then A is 

Ca-compact in X,  where ( X , ~ )  is the completion of (X,/,/) iff f ( A )  is a compact subset of 
R ~ from every uniformly continuous function from X into ~'~; we characterize the C~-compact 
subsets of topological groups; and we also prove that if {Gi: i E I} is a set of topological groups 
and A~ is a Ca-compact subset of G,~ for all i E I,  then I - L ~  A~ is a Co-compact subset of 
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O. Introduction 

All spaces are assumed to be Tychonoff. For a space ~L, Z ( X )  will denote the set 
of  zero-sets of X and for :l: E X ,  ~r(:c) is the set of  ~I neighborhoods of :e in X ,  If 

f : X ~ Y is a continuous function, then/~(f )  : f~(X~ ~ [3(Y) denotes the Stoue-Cech 
extension of f .  Tile Greek lette~ ~, '7 and K will s!and for infinite cardinal numbers. If 
X i s a s e t  a n d a  is acardinal ,  then IX] ~<c' = { t C X:  IAI ~< a}.  If a is a cardinal 
number, then c~ also stands for the discrete sp;:ce of  cardinality ~. We know that fl(o~) 
can be identified with the set of all ultrafilters on t~ and its remainder a* = fl(oQ \ 
with the set of all free ultrafilters on r~. If '7 ~< r~, then .)r-~(a) will stand for the filler 

{A __ c~: ]c~ \ A I < ,~,}. Observe that if n ~< q, <~ ~, then ~'~(~) C_ .T'~(c~). For 
an ordinal number 0, [(I, 0) will denote the space that consists of the underlying set 
{,u: ,tt < 0} equipped with the order topology. The space [0,0 + I) will be denoted 
by [0,0]. The weight and the density of a space X are denoted by w ( X )  and d(X) ,  
respectively. A space X is said to be a-Lindel6f  if every open cover of X contains 

a subcover of  cardinality not bigger than c~. The LindelSf number £(X) of a space 
X is the smallest cardinal a such that X is t~-Lindel6f. For a space X ,  the set of 
all real-valued continuous functions defined on X will be denoted by C(X)  and, if 
t~ is a cardinal, then C ( X , ~  '~) will denote the set of all continuous functions from 

X to L~". For a cardinal a ,  a subset G of  a space X is called a G,~-set if G is the 
intersection of  r~-many open subsets of X (the G~.-sets are usually called G6-sets). If A 
is a subset of a space X and a is a cardinal, then the G,~-clostoe of  A in X is defined 
by 

G,~-clx(A) = {.r E X:  if G is a G , - se t  of X and x E G, then G N  A ~ 0}. 

We simply write G,~-cI(A) if ambiguity is impossible. We say that D is G,~-dense 
in X if G,~-Clx(D) - X .  Notice tha~ if cr < % then G.~-clx(A) c G , -c lx (A)  
for a subset A of a space X.  If r ~. 11~, then r* is the point of  ~'~ with all coor- 
dinates equal to r. If f : X  -4 I~ '~ is a continuous function, then for every ~ < oL 
we write fe = 7re o f ,  where 7r~ : ~'~ --+ ~ is the projection map on the ~th coordi- 
nate. 

In [23], Hewitt studied the spaces X such that f iX] is a bounded subset of ~. for 
each f ~ C ( X ) :  he called these spaces pseudocompact. Besides, he proved that the 
pseudocompaetness of  a space X is equivalent to each one of the following statements: 

(1) f iX]  is a compact subset of ~ for each f ~ C ( X ) ;  
(2) X is G~-dense in 3 ( X ) ;  
(3) X is G6-dense in every compactification of X.  
Hewitt 's concept has been generalized, in different ways, by several topologists (see 

[2.5-7,17,24,26]); in particular, a subset B of a space X is called bounded, in X ,  provided 

that fiB] is a bounded subset of  ~ for all f E C(X) :  the boundedness of a subset 13 
of a space X is equivalent to the condition that if/.4 is a locally finite family of open 
subsets of X such that each one of them meets B,  then/ . / i s  finite. It should be remarked 
that a subset B of a space X is bounded if and only if for every cardinal t~ and for 
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every f E C(X,  I~°), there is a set { [a~, b~]: ~ < a} of closed intervals of l~ such that 
f[B] c__ I-Ie<,[a~, b~]. In parallel, lsiwata [241 introduced and investigated the subsets B 
of a space X with the property that inf{f(:e): z E B} > 0 for every f E C ( X )  which is 
positive on B, equivalently, fiB] is compact for every f E C(X):  this concept is named 
hyperbounded by Buchwalter [7] and C-compact by the authors of [171. We adopt the 
terminology from [ 171. 

In Section I, we give the basic properties of Co-compact subsets and a generalization, 
in the context of C,-compactness, of Tamano's theorem [341: X × Y is pseudocompact 
iff both X and Y are pseudocompact and the projection map 7rx : X × Y --+ X is z-cle-, 
sed. The degree of C~-compactness of a C-compact subset is introduced and estimated 
on locally compact, pseudocompact spaces in Section 2. In Section 3, we study the 
C,-compact subsets of the completion of a uniform space and of topological groups. 
The degree of pseudocompactness of topological products and their ~-products are 
studied in Section 4. 

1. Co-compact subsets 

We start with a very natural generalization of C-compactness. 

Definition 1.1. Let X be a space. A subset B of X is said to be C,~-compact in X if 
fiB] is a compact subset of ~o for every f E C(X,  ~o). 

It is not hard to see that a subset B of a space X is C-compact if and only if it is C~- 
compact in X, and if c~ and "/' are cardinals with a < 3', then every C.y-compact subset is 
a Co-compact subset. Thus, every Co-compact subset is C-compact. If X is Co-compact 
in itself (equivalently, in ~(X)),  then we say that X is a-pseudocompact: this concept 
was introduced by Kennison in [261. So we have that every a-pseudocompact space is 
pseudocompact for any cardinal number a. it is known that [0, wl) is a pseudocompact 
space that is not w,-pseudocompact. Proposition 2.7 of [5], Lemma 2.4 of [17] and 
Theorem ! of [291 have the following Co-compact version (recall that a subset A of a 
space X is said to be z-embedded in X if every zero-set of A is the restriction of some 
zero-set of X). 

Theorem 1.2. For a subset B of X,  the following are equivalent: 
(1) B is C~-compact in X;  
(2) B is Co-compact in fl(X); 
(3) B is Go-dense in clf~(x)(B); 
(4) B is G,~-dense #~ cWo(x)(B); 
(5) B is Go-dense in c lK(x) (B) for  eveo' compactification K ( X )  of X;  
(6) every cover of B of cardinality ~< t~ consisting of cozero sets of X has a finite 

subcover, 
(7j /f {Z~: ~ < a} c_ Z ( X )  and B n O ~ s t Z  ~ # O for ever).'finite subset I o f , ,  

then B fq [')~ <, Z~ ~ 0; 
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(8) ifO* E clI~,~ (f[B]) for a continuous function f : X --+ ~ .  then O* E f[B]; 
(9) f[B] is a closed *ubset of ~ a for all continuous functions f : X -¢, ~ ;  

(1 O) for every z-embedded subset S of X that contains B, B is C~-compact in S; 
( I l ) for every" cozero subset C of X that contains B, B is Ca -compact in C; 
(12) for every continuoas fimction f : X  -+ Y with re(Y) <~ c~. f[B] is a compact 

subset of Y. 

We then have that B is Ca-compact in the space X iff G,,-cl~(x}(B) = cl3(x)(B ). 
In the next corollary we state two useful conditiu~s equivalent to c~ pseudocompaemes~ 
Before we state it we recall that a family of  subsets of a set is said to have the a -  
intersection property if every subfamily of  cardinality not bigger than ot has nonempty 
intersection. 

Corollary 1.3. For a space X the following are equivalent: 
(I) X is a-pseudocompact; 

(2) every family of  zero sets having the finite b~tersection property has the a. 
intersection property; 

(3) for every, function f : X -4 [0, 1!% cl~(x)( f - I (x))  = ( ~ ( f ) ) - i ( x )  for all x E 
In, 1] ~ 

The equivalence ( l )  <:~ (2) of  the corollary just given was proved in [26]. The next 
result extends Corollary 2.9 of  [I 7]. 

[ , emma 1.4. Let X be an a-pseudocompact space. If  C = N¢<a Z~. where Z~ C Z ( X )  
for each ~ < cr, then C is C~-compact in X as well. 

Now, we give a necessary condition to separate a particular subset of  a space from a 
C~-compaet subset. 

L e m m a  1.5. Let X be a space, l f  A = N~<a z~, where Z¢ E Z ( X ) f o r  each ~ < t~, B 
is Ca-compact in X and A N B : 0, then A and B are completely separated. 

Proof. For each ~ < a ,  choose a continuous function f¢ : X -~ I~ such that f~- I (0) = Z~. 
Let f : X  --> R ~ be the evaluation map of  the set {f~: ~ < a}.  Then f ( z )  = (f~(z))~<~ 
for z C X.  Then we have that A = f "l(0*). Since B is Co-compact in X and disjoint 
from A, fiB] is a compact subset of  ~'~ which does not contain 0% Hence, we can find 
a continuous function g : ~ ---¢. ~ such that g(0*) = 0 and 9[f[B]] = { 1 }. Then, g o f 
witnesses that A and B arc completely separated. 12 

Definition 1.6. A continuous surjection f : X ~ Y is said to be a z~-map with respect 
to A C_ X and B c_ y if f[A] = B and f[f')~<,~ Z~ M A] is a closed subset of  B provided 
that Z¢ E Z(X) for each ~ < a. in addition, if f[f']~<~, Z~ N .4] = ~ < , ,  K~, where 
K¢ E Z (B)  for each ~ < ~, then we say that f is a strongly z~-map with respect to A 
and B. 
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N. Noble [28] studied the projections *r : X x Y --~ X which are z-maps with respect 
to A × B and A,  where A C_ X and B C_ Y, and called them relatively z-closed. If 
a = w, X = A and B = Y, then we simply say z-map and strongly z-map: the z-maps 
were introduced by Frol~ in [ 16] and the strongly z-maps were studied in [19]. Tamano's 
theorem (see [34], [ 10, Theorem 4.1 ]) on pseudocompacmess of  a product of  two spaces 
has been generalized by Noble [28] as follows: if A C_ X with a nonisolated point and 
B c_ y ,  then A x B is bounded in X × Y if and only if the projection map ~r : X x Y ---> X 
is a z-map with respect to A x B and A, A is bounded in X and B is bounded in Y. 
Now, we shall extend Tamano's theorem in the context of  C~-compactness. First, we 
prove some preliminary lemmas. 

Lenuna 1.7. Let A C X and B C_ Y .  I f  A x B is Ca-compact in X x Y,  then 

c l x ( r [ ~ < N Z e n ( A x B ) ] ) = ~ r [ N < a Z ~ N ( A x B ) ]  C A ,  

where ~ : X x Y -~ X is the projection map and Ze E Z ( X  x Y )  for  each ~ < a:  that 
is, ~r is a za-map with respect to A x B and A. 

Proof. Put Z = f')e<,~ Z e, where Z~ E Z ( X  x Y )  for each ~ < a .  Suppose that 

E clx (~r [Z M (A x B) ] )  \ z [Z n (A x B)] .  

We have that ({x} x B) Iq Z = 0 and since {x} x B is C'¢,-compact in X x Y. by 
Lemma 1.5, there is a continuous function f : X  x Y --+ [0, I] such that f ( ( x , b ) )  = I 
for all b E B and Z C_ f - I ( 0 ) .  Arguing as in the proof of  Theorem 4.1((a) ~ (b)) of  
[10], we obtain a contradiction. [] 

In the next three lemmas, we generalize a result that is included in the proof of 3.4(a) 
and 3.5 of  [19]. In order to prove them we shall slightly modify the arguments given in 
the original proofs from [19]. 

Lermna 1.8. I f  f : X --+ Y is a z-map with respect to A C X and B C y such that its 

restriction f : A ~ B is an open map, Z E Z ( X )  and C is a cozero set o f  X such that 
Z C_ C, then there is K E Z ( B ) f o r w h i c h  f [ Z N A ]  C_ K C_ f [ C M A ] .  

Proof. Let h : X  --* [0, 1] be a continuous function such that 

Z = h - I ( 0 )  and X \ C = h - ' ( I ) .  

Set D = {r  E (0, l): r is dyadic}. Now, for each r E D we put 

U~ : f [ h - l ( [ 0 , r ) )  h A l .  

Then, Ur is an open subset of  A and A = U r e a  U~.. Since f is a z-map with respect to 
A and B, f[h-I([O, r]) n A] is a closed subset of  B and hence 

cl~(u~) c ;[h-~([0,~l) nA] c V~ 
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whenever r, s C D and r < s. By Lemma 3.12 of [20], y(y)  = inf{r E D: y E Ur} for 
y E B defines a continuous function from B to [0,1]. If K = g-I(0), then K E Z(B) 
and f [ Z  M A] C K C_ f [ C  M A]. [] 

Lemma 1.9. Let f : X ~ Y be a z-map with respect to A C_ X and B C_ y such that 
its restriction f : A ~ B is an open map and f -  i (b) n A is Ca-compact in X fi~r all 
b E B.  I f  h : X --~ [0, 1] ~ is a continuous function and 0 < n < w. then there is a set 
{K~: ,~ < c~} ___ Z(B) such that 

f [h- ' (0")  rlA] _C N K, C f i b - ' ( [ 0 ,  1 ) ' ) n a ] .  
~<~ 

Proof. We proceed by transfinite induction on o~. Lemma 1,8 is the case when c~ = w. 
Assume that the conclusion of the lemma holds for all cardinals 7 < ~ and for each 
0 < m < w. Let h : X  --~ [0, 1] ~ be a continuous function and 0 < n < w. For each 
ordinal number # < or, we set h(Iz) = j~ o h : X  -+ [0, 1]", where j ,  :[0, 1] ~ --~ [0, 1]" 
is the projection map. By induction hypothesis, for each ,a <: c~ there is a set 

{h'~': ~ < ~,} c Z(B) 

such that 

Hence, 

f [h- ' (0*)  • A] = f [  N h(#)-t(0*) f~ A] c N f [h (# ) - '  (0") ~ A] 

[ ([o , ]") ] 
We claim that 

, "  )oa ] : ,  n, , , ,  ' ([ 0 
In fact, let 

1 ~' 
yE ,0~.f [h(#)- I ( [0 ,  ~ - -~ ]  ) h a l .  

Then. we have that f - t ( y )  N A N h(/z)-t([0, I / ( n  + l)]J') ~ O for each IL < ct. Since 
h(v)-I([0, l / ( n +  1)] ~) C_ h(#)-I([0, l / ( n+  I)] -~) whenever.u < ,  < a and f - I ( y ) o A  
is C'~-compact in X, by Theorem 1.2(7), we have that 

f - '  (Y) f~ a M N h ( # ) - '  ( ~ . ~ ]  ) , { ~ 1  
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and hence 

Therefore, 

no n n ' " 

o 

Lemma I,IO. I f  f : X ~ Y is a z-map with respect to A C_ X and B C Y such that 
its restriction f : A -~ B is an open map and f - t ( b )  n A is C•-compact in X for  all 
b E B,  then J is a strongly zoo-map with respect to A and B. 

Proof .  Let {Z~: { < ~} C Z ( X ) .  Fix a continuous function h : X  --+ [0, 1] ~ such that 
N¢<~ Z~ = h - i  (0"). For each ordinal number # < a .  we put h(#)  = jr, oh : .X -*  [0, l] ~, 
where jv : [O,  I] ~ --~ [O, l]V is the projection map. Notice that n , < ~  h(#)- I{O *) = 
h- t(O*).  According to Lemma 1.9, for  each # < a and for each O < ~z < ¢o we may 
find {K~,~: ~ < p} c_ Z ( B )  such that 

s[hu,)-'~o') ~ A] ~_ N ~:., ~- ~[~/.I-' ([o, ~-)")hA] 

Hence, 

i[h-'(o')nA]=f[J~< h(v)-t(O')nA]C n n n.,,  

N n f[hl./-'([0,~-)")NA]. 
o<~<w/,~ < ct 

To show that 

f [ h - t ( 0 " ) A A ] =  n N N~.',,= N 
0<:n<~ /z<a ~<,u 0<n<~ ~<a 

we argue as in the pro~f of  Lemma 1.9. [] 

A Cc,-compacmess version of  Tamano's  theorem is the following. 

l l l e o r e m  I . U .  Let A C X and B c Y .  l f  A is o z-embedded in X ,  then the following 

are equivalent: 
(I) A x B is C~-compact M X x Y ;  
(2) A and B are C~,-compact in X and Y ,  respectively, and the projection map 

~r : X x Y --+ X is a zo-map with respect to A x B and A; 

(3) A and B are C~-compact in X and Y ,  respectively, and the projection map 
lr : X x Y --~ X is a strongly z,~-map with respect to A x B and A. 
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Proof, (I) ~ (2). This is Lemma 1.7. 
(2) ::~ (3) This follows from Lemma 1.10. 
(3) :=> (1) We shall verify clause (7) of Theorem 1.2. Let {Z~: ~ < c~} c ,Z.(X) such 

that (A × B) n 1")~ r Z~ # 0 for each finite subset I of a. By assumption, r[n~< a z~ M 
(A x B)I = M¢<~/~, where Re c Z(A) for each ,~ < c~. Now, for each ~ < t~, we can 
find L~ C Z ( X )  for which A n L~ = R& It is then evident that every finite subfamily 
of {L<: ~ < oz} meets A and since A is C~-compact in X, 

Z n f ~ L , =  r q R ¢ = T r [  ~< Z ~ A ( A × B )  ] # 0 .  
~<~ 

Hence, A x BnN~<~Z~ # 0 .  [] 

It is pointed out in [5, Corollary 2.8] that a z-embedded subset B of a space X is 
C-compact in X iff B is pseudocompact. It follows from necessity in Noble's theo- 
rem quoted above and Theorem l.l I that: 

Corollary 1.12. Let A C X and B G Y. I f  A is z-embedded in X.  then the follon,ing 
are equivalent: 

(I) A × B is C-compact in X x Y; 
(2) A x B is bounded in X x Y and A and B are C-compact h* X and Y,  respectively: 

It then follows front Corollary 1.12 that if X is a pseudocompact space, then X × B 
is bounded in X × Y for every C-compact subset B of a space Y if and only if X × B 
is C-compact in X x Y for every C-compact subset B of Y. This improves Corollary 
5.6 of II8]. 

Question 1.13. l f  A and B are Ca-compact hi X and Y,  respectivel3; and the projection 
map 7r : X × Y --4 X is a strong(~' zo-map with respect to A × B and A, must A × B 
be Co-compact h~ X × Y? 

2. The degree of pseudocompactness 

We know that any space X can be embedded in ~,,(x).  Hence, a subset B of a space 
X is compact if and only if B is C1Hx)-compact. This suggests that one should study the 
following cardinal function that, in particular, estimates the degree of pseudocompactness 
of a pseadocompact space. 

Definition 2.1. Let X be a space. If B is a C-compact subset of X, then we define: 

{ =  if B is compact. 
p(B,X)  = p{cc B is C,,-compact in X} if B is not compact. 

If X is pseudocompact, then we simply write p(X) instead of p(X, X).  It should be no- 
ticed that if B is C-compact in X, then p(B, X )  >1 ~v. Since every space X can be embed- 
ded in ~ , , ( x )  we must have that p(X)  <~ ~(X) <~ w(X) .  Hence, i f X  is pseudocompact 
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and noncompact, then X cannot be d(X)-pseudocompact. If X is a noneompact, pseudo- 
compact space and p(X) is a successor cardinal, then X is p(X)-pseudocompact. Thus, 
a space X is compact iff X is ((X)-psendocompactX iff X is w(X)-p~odocompact .  
By Theorem 1.2, we have that p(X)  = p(X, jS(X)) for every pseudocompact space 
X.  It follows from the definition that if X is a pseudocompact space, then p(X) <~ 
p(X, B ( X ) )  for any compactification B ( X )  of X .  By Theorem 1.2, we have that p(X) = 
sup{c~ : Go-clI-j(x)(X ) = fl(X)} for every noncompact, pseudocompact space X .  

A space X is called initially c~-compact, for a cardinal c~, if every open cover/ , /  
of  X with I/,41 <~ ~ has a finite subcover (this class of  spaces was introduced by 
Y.M. Smirnov [32]). We have that a space X is initially o-compact iff every subset 
A of X of cardinality not bigger than ~ has a complete accumulation point in X (a 
proof of this fact is available in [33]). We omit the proof of the following easy resul, ~. 

Theorem 2.2. If X is initially c~-compact, then a <, p(X). 

We notice that p(IO, tvl )) = ;v and [0, ~-'l ) is initially w-compact and if p E a:* satisfies 
that X(p,/~(~)) = 2 ~ (these ultmfilters exist in ZFC, see [8, Theorem 2.7]), then f3(~v) \ 
{p} is 3,-pseudocompact for every 3' < 2 ~ and it is not initially 2~-compact. 

If X is a locally compact space, we denote by A(X)  the one-point compactification 
of  X by the point ~ (in the sense of AlexandrofO. Then, for every uncountable car- 
dinal number c~ we have that ,~ is C-compact in A(c~), a is not C~,-compact in A(,~), 
p(c~+,A(c~+)) = c~ and if c~ is a limit cardinal, then p(,~,A(o0) = ~. It is pointed 
out in Corollaries 3.8 and 3.9 of  [17] that every locally compact, LindeliSf space X 
that is C-compact in A ( X )  must be compact, and every locally compact, non-Liodel6f 
space X is C-compact in A(X) .  Hence, p(X, A (X) )  <~ g(X) for every locally compact, 
non-Lindel6f space X. For locally compact spaces, we have the next re~,:ults. 

Lernma 2.3. Let X be a locally compact, non-LindeliJf space. Then p( X,  A( X )  ) exists. 
X is CT-compaet in A (X)  for every "7 < £(X) and X cammt be Ce(x)-comlutct in 
A(X) .  

Proof. Since X is not Lindel6f, we have that ~(X) > w. Let 7 < g(X).  If X is not 
C,~-compact in A(X) ,  then { ~ }  = ~¢<.~ V¢, where V~ is an open subset of  A(X)  for 
each ~ < ?, by Theorem 1.2. Hence, X = U~<,r(A(X) \ V~) and this implies that 
*(X) ~< 7, but this is a contradiction. It is evident that X cannot be Ce(x)-Com~act in 
A(X) .  [] 

Corollary 2.4. Let X be a locally compact sptrce and let c~ be a caJffinal. The following 
are equivalent: 

(1) e(X) ~ a; 
(2) either X is compact or X is not Ca-compact in A(X) .  

Corollary 2.5. Let X be a locally compact, nou-Lindel6f space and let p( X,  A ( X ) ) = c~. 
The following assertions hold: 
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(1) g(X) = oL + i f  and only if  X is Ca-compact in A ( X ) .  
(2) g(X) = ct i f  and only i f  X is not C,-compact in A ( X ) .  

We remind the reader that a space X is said to be alraost-compact if I f l(X) \ X I <<. I. 

We have that if X is an almost-compact space, then X is locally compact, all its pow- 
ers are pseudocompact and p ( X )  = p (X ,  A ( X ) ) .  We shall give an example of  a locally 
compact space Z such that p(Z)  = p(Z.  A (Z ) )  and Z is not almost-compact (see remark 
after Corollary 2.12). It is well known that if oL is a cardinal and cf(o~) > to, then [0, o 0 
is a countably compact space and fl([0, c~)) = [0, o~]; that is. [0, a )  is almost-compact. 
We also have that ~([0,o~)) = cf (a)  for every cardinal a .  As a consequence of  this fact 
and Lemma 2.3, we have: 

Theorem 2.6. Let c~ be a cardinal with cf(c 0 > to. Then [0,t~) is 7-psendocompact for  
all to x< 3' < cf(c~) and it is not cf(cO-pseudocompact. 

Corollary 2.7. For eveo' cardinal ce, we have that p([O, c~+)) = a. 

Proof. By Theorem 2.6. we have that [0, a +) is c~-pseudocompact and since w([0, ~+) )  = 
t~ +, we must have that p([0,t~+)) : ct. El 

Corollary 2.B. I f " / a n d  c~ are cardinals with 7 < a, then [0,7 +) is 7-pseudocompact 
and is not cx-pseudocompact. 

An example which separates the class of C.-compact  subsets lbr different cardinal 
numbers c~ in the context of  topological groups can be found as follows: let X be a 
space. We denote by F ( X )  the free topological group generated by X (see [9. 2.3 and 
9.20]). It is known that X is a closed C-embedded subspace of  F ( X ) .  Let a and 
be cardinal numbers with a < % Let X be an o:-pseudocompact space which is not 
7-pseudoeompact. Since X is a closed C-embedded subset of  F ( X ) ,  X is a closed 
C.-compact  subset of  F ( X )  which is not C.~-compact, 

Coro | lary 2.9. For every limit cardinal number c~ with cf(ct) > to, we have that 

p([0, , , ))  : cf (a) .  

Proof. We know that /~([0, a ) )  = [0, a]. According to Theorem 2.6, [0, ct) cannot be 
C¢t.(c,)-compact in [0,t~] and hence p([0,a])  <~ cf(a) .  It then follows from Theorem 2.6 
that p( [0 ,a) )  = cf(a) ,  t2 

The proof of  the next corollary is left to the reader. 

Corollary 2.10. Let a be a cardinal with cf(a)  > to. Then, we have: 

( I ) c~ = 7 + for  some caJdinal 7 i f  and only i f  [0, cr) is p([0, a))-pseadacompaa; 
(2) a is weakly-hmccessible i f  and only tfp([0,ot)) = a. 
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We turn now to consider the next cardinal function which is somehow related to that 
of  Definition 2.1 and is useful in the study of  the cardinal function p in the class of  
locally compact spaces. 

Defnition 2.11. Let X be a space, if B is a sub~t  of  X .  then we define: 

. { <x~ if B is compact, 
p ( B , X ) =  min{ot: BisnotC~-compactiuX} i f / J i s n o t c o m p a c t .  

Ob~rve  that a subset A of a space X is not C-compact in X if and only if p* (A, X)  = 
tv, and if B is C-compact in X,  then p(B,X)  <~ p*(B,X) <~ p(B,X)  +. If X is a 
space, then we write p*(X) = p*(X, X)  = p*(X,13(X)). If f : X --> Y is a continuous 
surjection, then p*(A,X) <<. p*(f(A),Y) for every A c_ X such that f (A)  is not 
compact, We also have that if X is any noncompact space, then p*(X) exists and 
p*(X) <<. p*(X, B(X)) for every eompactification B(X)  of X,  

Corollary 2.12. If X is a locally compact, noucompact space, then 

p* (X, A(X)) : e(X). 

Proof. If X is Lindel6f then, by Corollary 3.8 of [171, we have that X is not C-compact 
in A(X) and so p*(X) = ~ = f (X) .  Now assume that X is not Lindel6f. Since X 
is G.r-dense in A(X) for all 7 < ~(X), £(X) ~< p*(X,A(X)) and, by Lemma 2.3, 
E(X)=p ' (X ,A(X) ) .  [] 

For 1 ~< n < m < tv, we have that Z = [0, a : n ) ~ [ 0 ,  wm) is a locally compact, 
noncompact space that satisfies p(Z)  = =an I, p*(2)  = wn and £(Z) = ~m. If  Z = 
[0, ~n) ~ [0, ~vn), for n E oJ, then Z is a locally compact, non-almost-compact space with 
p(Z) = p(Z, a(Z)). 

A space X that is C-compact in some of its compactifications is called weakly-pseudo- 
compact; several properties of  these spaces are investigated in [17]. It is pointed out in 
Corollary 2.9 of  [171 that a locally compact space X is weakly-pseudocompaet if and 
only if X is either compact or it is not Lindel6f. 

Theorem 2.13. Let X be a noncorapact spcce. Then 
(I) p*(X,B(X)) <. e(X) Jor eve O" Lzmlpactificatim, B(X)  of X; 
(2) If X is" a weakly-pseudocompact space, then there is a compactification B(X)  of 

X ,for which 

p(X ,B(X))  ~ p*(X,B(X))  < t(X). 

Proof. ( I)  Let B(X)  be a compaedfication of X.  Fix z E B(X)  \ X,  then we may find 
a Ge(x)-subset H such that z E H and H f'l X = 0. Hence. X cannot be Ge(x)-dense 
in B(X)  and so p*(X, B(X)) <~ ~(X). 

(2) Let B(X)  be a compactificatiou of X witnessing that X is weakly-psendocompact. 
By clause (I). we have that p(X,B(X))  <~ p*(X,B(X)) <<. *(X). [] 
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Observe that p*(a)  = w and g(a)  = t~ for all cardinal numbers c~. 

Theorem 2.14. For a locally compact, noncompaet space X .  the following ate equiwt- 
lent: 

O)  p ' ( X )  - t ( x ) ;  

(2) p* ( X ,  B(  X )) = g( X ) fi~,. air compactific~tion B(  X ) ~g" X .  

Proof.  (1) ~ (2). Let B ( X )  be a compactification of  X .  Then we have that 

e (X)  : p* (X)  < p*(X~ B ( X ) )  <~ p * ( X , A ( X ) )  = g(X) ,  

the last equality follows from Corollary 2.12. 

(2) =~- (l).  This is evident. [] 

Every almost-compact space satisfies the conclusion of  Theorem 2.14. The space of 
the real numbers ~, is an example of  a locally compact, non-almost-compact space with 
p*(~)  = e (~)  = t o .  

A better upper bound for the degree of pseudocompactness is the realcompactness 

number of  a space X which was introduced in [1] and it can be defined as follows: the 

realcompactness number of  a space X is 

q ( X )  = m i n { ~ / >  w: X = G , , - c l ~ x ) ( X ) } .  

We should remark that a space X is compact iff X is q(X)-pseudocompact iff X is 

a-pseudocompact and q( X ) >>, a.  

Theorem 2.15. For eveo'  noncompact .q~ace X ,  u,e have 

p ' ( X )  <. q ( x )  <<. e ( x ) .  

Hence, if  X is a noncompact, pseudocompact space, then p ( X )  <, q (X) .  If X is 

almost-compact and noncompact, then p*(X)  = q (X) .  If X is not realcompact and 
not pseudocompact, then p*(X)  = ~ < q(X) .  For an arbitrary cardinal c~, if  X is 
pseudocompact and not c~-pseudocompact, and Y is c~-pseudocompact and noncompact, 

then Z = X ~ Y is a pseudocompact space such that p*(Z)  <<. a < q(Z).  
The Isbell-Mr6wka spaces are defined by means of an almost disjoint (AD)  family 

of  infinite subsets of  w as follows: if  ,4. is an A D  family, then the IsbelI-Mr6wka space 
g'(.A) consists of  the underlying set M. t3 ~v, the points of to are isolated while if  a: C .A, 
a basic neighborhood of z has the form {x} t3 A where A is a colinite subset of a:. It 

is shown in 120, 5.1(5)], that ~(..4) is pseudocompact iff .A is a maximal almost disjoint 
(MAD) family. It is easy to prove that if  .4. is a MAD family, then e(~(A)) = IAI 
and hence p(~(.A)) ~< p*(~(,A)) ~< IAI. Hence, kO(.A) is never [.Al-pseudocompact and 
if  we assume C H ,  then p(~(~4)) = to for every MAD family ..4. We know that there 
are MAD families ,A for which ~(.A) has only one compaetification (a construction of 
this kind of MAD families is available in [4,27,35]). If  ~(ff'(,A.)) = A(ff'(,A) then, by 

Corollary 2.12, p*(~(,A)) = f(ke(A)) = IAI and hence # ( A )  is ,~-pseudocompact for 

every w ~< ~.* < / A I .  
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3. Uniform spaces and topological groups 

In this section, we will study the behavior of the product of C'~-compact subsets of 
topological groups. Our principal tool is the theory of uniform spaces. All the uniformities 
considered in this section are compatible. We shall denote the completion of a uniform 
space (X,H)  by ()~,H) (see [15, Theorem 8.3.12]). it is known that if a space X is 
topologically complete, then cl.~(A) is compact for every bounded subset A of X.  

A 
Theorem 3.1. Let A be a bounded subset of  a uniform space (X,/X) and let (X,bl)  be 
the completion of  (X,L(). The following assertions are equivalent: 

(1) A is Co-compact in X.  
(2) A is C~.compact in cl~(A). 
(3) A is Go-dense in cl~(A). 
(4) f[A] is a compact subset of  ~ for eve O" uniformly continuous function from X 

into ~'L 

Proof. (1) ~ (2). Let f : c l ~ ( A )  ~ R c' be a continuous function such that f[A] is 

not compact. Since cl~ A is compact in (X,U) ,  them exists a continunus function 

~: X ~ R"  such that .OIA = f]A and so A is not C~-compact in X. 
(2) ~ (3). Suppose that there exists a set {Z~: ~ < c~} of zero sets in cl~(A) such 

that ~ < ~  Z~ N A : 0 with ~ < ~  Z~ ~ 0. Let f¢ be a continuous function from eI~(A) 
into ~ such that Z~ = f~-I(0), for each ~ < ~. Consider the function f : c l ~ ( A )  --* ~ 
defined by J'(:r) = (f~(J:))~<~ for every ~: a cl~(A). Pick .~ ~ fi~<~ Z~. Then 

f ( y )  E f[cl..~(A)] \ f[A]. 

Thus, f[A] is not compact. 
(3) ~ (4). Let f be a uniformly continuous function from X into ~ .  Let f be the 

uniform continuous extension of f to 2~, Pick y E f[cl~(A)] \ I[A]. Since every point 
in ~ is a G,~-point, f - i ( y ) n  cl~(A) is a Go-subset in c1:7 (A) which does not meet A. 

(4) ~ (1). Let f be a continuous function from X into ~ .  We have that the function 
f h ~ ( a )  is uniformly continuous with respect to the uniform structure induced by /d  on 

cl~(A), because cl~.(A) is compact. By KatStov's theorem 1251 (also see [15, 8.5.6(b)1) 

there exists a uniformly continuous function g from .~ into Ro such that g[~lz.tA ) = 

field-(a). Since glx is uniformly continuous, g[A] = f[A] is compact. [] 

The above theorem shows that it is not necessary to consider all continuous real-valued 
functions to study some properties of C,,,-compact subsets in uniform complete spaces. 
Actually, it suffices to consider functions that are uniformly continuous. On the other 
hand, let ~ be an uncountable cardinal and 

b / =  {A: ~ is a finite cover of ct, every element of A is either finite or cofinite}. 

Then, a is not C,-compact in the uniform space (or, H) and every uniformly continuous 
f :  (~t,/d) ~ ~ sends c~ onto a compact subset of ~. The referee communicated to the 
authors the fullowing example due to A.W. Hagcr. 
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Example  3.2. An example of  a bounded, non-C-compact subset B of  a uniform space 
(X,H)  such that B is a C-compact subset of  ()~,/~) is the following: 

Let X = [0,'~i) x ~(wt)  U {oJi} × wl, and let B = {a21} × a:t C_ X.  Since X is 
pseudocompact, all of its subsets (in particular. B) are bounded in X.  To see that B is 
not C-compact in g ( X )  = [0,~l] ×/3(we) (hence, B is not C-compact in X)  let f be 
a continuous function on 8(~ l )  with f[a~] not compact, and define F : / 3 ( X )  --~ • by 
F(x,  y) = f (x )  for all (x, y) ~ f l(X);  then F Ix is continuous on X,  and F[B] = F[tol] 
is not compact. We note that X is locally compact. Let H be the uniformity on X induced 
from its one-point compacfification. Then, we have that every real-valued function f 
uniformly continuous on X with respect to H has a continuous extension .f'to the oue- 
point eompactification A(X)  - X U {oox}. The one-point compactifieation A(B)  of B 
is BU{ooB} = B U { o o s } ,  so f[B] ~ I[B] is compact since B is C-compact in A(B). 

Lemma 1.3 of I1 1] can be generalized as follows: 

L e m m a  3.3. Let ~ be a cardinal and let Ai be a subset of  a nonempo, space Xi  for 
i E L Then A~ is G~-dense in Xi. for all i E I i f  and only i f I I ~  t Ai is G,-dense in 
I],~, x~. 

The following two corollaries are immediate consequences of  Theorem 3.1 and 
Lemma 3.3. 

Corollary 3.4. Let {(Xi,H~): i E I}  be a set of  complete uniform spaces. Let Bi be 
a Ca-cotnpact subset of  Xi for each i E I. Then l- l~t  Bi is a Ca-c~mpact subset of  
11i~t Xi. It~ particular; the product of  Co-compact subsets of  topologically complete 
spaces Xi  is again C,~ -compact in the product of  the spaces Xi. 

Corollary 3.5. Let { Xi: i E I} be a set of  topological spaces such that 

fEI 

Then. I-Ii[ i Bi is a Co-cootpact snbset of  l-liel X~ whenever Bi is a Co-compact sabset 
of  X~ for every i E I. 

In [21], I. Glicksberg also gave the conditions for the pseudocompactness of a product 
in terms of countable subproducts: a product of nonempty spaces is pseudocompact iff 
each countable subproduct is pseudocompact. It is then natural to ask whether there is the 
C~-compact version of  Glicksberg's result. In the following theorem, we give a partial 
answer to this question. First, we state a lemma that was proved by W.W. Comfort and 
S. Negrepontis [12. Theorem 10.14]. 

I . emma  3.6. Let c~ be a cardhlal, let {X/: i E I} be a set of  spaces with each d(X~) <~ ct 
and let f : I-L~t x~ -+ Y be a contb~uons fitnction with Y a space such that w(Y)  <<, c~, 
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Then, there is a subset d of I and a continuous function g : ~Ii~.t X~ --~ Y such that 
IJI ~< ~ and g o Ir d = f ,  where 7r j : H i l l  X~ --+ I]ie j Xi  is the projection map. 

Theorem 3.7. Let {Xi: i E 1} be u set of  spaces and let B~ C_ X~ for every i • I. I f  7 
and a are cardinal numbers such that a <~ 3' and sup{d(Xi): i E I} ~< 7. then lL~ t  B~ 
is C~-compact in 1-Iist X i  if  and only i f  I'I~eJ Bi is C'-compact in I I ~ j  X i  for every 
J c_ I with !dl ~ "Y" 

Proof. Let 3' and c~ be cardinal numbers with a ~< 7 and sup{d(X~): i ~ I} ~< 7. 
We will only prove the sufficiency. Suppose that F I ~ j  B~ is Ca-compact in ~ i e J  Xi 
for every J C I with IJI ~< "~. Let f : H i ~ i X i  --+ ~ a  be a continuous function. Since 
w(R ~) = a ~< 7, by Lemma 3.6, there is a subset K of I and a continuous function 

g: I I  x i  -~ ~ ~ 
iEK 

such that IKI ~< "~ and go~r K = f ,  where 

iEK iEK 

is the projection map. By assumption, 

[g,,]] = = ,  [g°,] 
is compact, l~is  shows that 11ier B~ is C~-compaet in I-[~t X,. [] 

We shall now study the Ca-compact subsets of topological groups. The next theorem 
generalizes Theorem 2 of [22]. Let G be a topological group, we denote by HL (re- 
spectively bit.n) the left (respectively, two-sided) uniform structure on G. Let (G,biLn) 
denote the uniform completion of the uniform space (G, birn). It is known [30, Theo- 
rem 10.12(c)] that G is a topological group. 

Theorem 3.8. Let B be a bounded subset of  a topological group G. The following 
assertions are equivalent: 

(1) B is C~-compact in G; 
(2) B is Go-dense in clyB,  with (Y, 1)) a uniform space such that G ~ Y and 

(3) B is Ga-dense in cl~(B); 
(4) for every uniform continuous function f fiom (G,HLn) into R ~, fiB] is comFacl. 

Proof. The proof of the equivalences among (!), (2) and (3) is similar to that of Theo- 
rem 2 of [22]. 

(3) =~ (4). This implication follows from (3) =*- (4) of Theorem 3.1. 
(4) =~ (I). Suppose there exists f : G  --> ~ such that f[B] is not compact. By 

[36, Corollary 2.29], f i b  is uniformly continuous with respect m the uniform swacture 
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induced by L/,..~ on B. So, we can extend f to a continuous function to c l~(B)  which 
is the completion of B with respect to L/,:~, By Kat~tov's theorem [25], there exists a 
uniformly continuous function g from ~ into ~ such that glB = f i n .  Thus, g[A] is not 
compact, a contradiction. £3 

We shall slightly generalize Corollary 3 of [22] and Theorem 1.4 of [131. We need 
.some notauon. For a set {G~: i C l}  of topological groups, we denote by L/~ n the two- 
sided uniform structure on Gi for all i E I .  If G = l l iEiGi  and L/Ln is the two-sided 
uniformity on G. it is known that b/z.n = I ] ~ i  b/~n [30, Proposition 3.35]. 

Corollary 3.9. Let {Gi: i c I} be a set of topological groups and let As be a Co- 
compact subset of G i for all i E I. Then l l ie  l Ai is a C¢,-compact subset of 11~ I G ~. 

We end this ~ction with an example. If G is a totally bounded, nonpseudocompact 
topological group (for the definition of totally bounded group see [9, Section 1]), then 
every real-valued function that is uniformly continuous with respect to the left uniformity 
/-/L on (7 is hounded on G' (see [9, 1.13]), and there is a eontinuot, s real-valued function 
that is not bounded on G',. The maximal totally bounded topological group topology on 
an infinite Abelian group is not pseudocompact (for a proof of  this fact we refer the 
reader to [9, 9.13]). 

4. Topological products and ~-products 

We start with an estimation of  the degree of  pseudocompaemess of a product of a set 
of  topological spaces. 

Theorem 4.1. Let Ai be a subset of X~ for i E 1. Then, 

p" ( I I  Ai, l-I X~) <~ min {p*(A,,XO: i E l} .  
i i 

Proof. Fix j C L Since Aj is not Cp.(A,,X,)-compaet, we have that I~i~t Ai is not 

Cp.(A~,X~l-compact in l-[i~t Xi, and hence p*(Ih~t Ai, FIi~1 x i )  <<. p*(Aj, x j ) .  [] 

we remark that if X is a pseudocompact space with X x X is not pseudocompact, 
then p*(X) > t.v and p*(X × X )  = ~ (for an example of  such a space see [20]). 

Theorem 4.2. Let Ai be a C-compact subset of Xi, for each i E I. If  I-Ii~l Ai is 
C-compao in l'Ii~t X~. then, 

p (  I-[ A,, I I  x , )  <~ min{o(Zi,Xi):  ~ E1}.  
x iE[ iEl s 

Proof. Let a = P([li~t Ai,~Ii~1 Xi) and 7 = min{p(Ai,Xi):  i E I}.  Then, there is 
k c 1 such that 7 = p(Ak,X~). Suppose that 3' < c~. If there is a cardinal n such that 
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7 < ~ < a ,  then [ L e t  A~ is G,~-dense in cl]-L~ r x, (1-L~t Ai). Hence, by Lemma 3.3. 

Ak is G~-dense in cl~(x~)(Ak) and so ~ ~< '7, which is a contradiction. Thus, a = 3 '+. 
Then, we have that l-[i~t Ai is C;a-compact in l 'Le l  x~, By arguing as the previous 
paragraph, we obtain that Ak is C~-compact in Xk, but this is impossible. Therefore, 

a~<-r .  [] 

We do not know whether the equality must hold in Theorem 4-.2. Next; we generalize 
Corollary 2.12 of  [ 17]: the proof follows from Lemma 3.3 and Glicksberg's theorem [21] 
(see [37, 8.25]). 

Theorem 4.3. Let A~ be a C-compact subset o f  X~, for  each i E [. I f  ]-Lel x~ is 
pseadocompact, then. 

t 1 i - ~  cI  • 

Example 4.4. Let X = [0,wl) x [0,wl). Then, X is a locally compact space that is not 
almost-compact and p ( X )  = p(X ,  A ( X ) ) .  If a is a regular cardinal and wt ~< a ,  then 
p([O,w|) x [0,a))  = ~v and e([0,wl) × [0 ,a))  = a .  

We now estimat# the cardinal function p on some subspaces of a topological product 
of  a set of spaces. The following theorem plays a very important role in studying the 
function p on subspaces of  products (it is taken from [3]). To state the theorem we need 
the following terminology: let X be a space, hd(X) and x ( X )  stand for the hereditary 
density and the character of X,  respectively; a set V of open subsets of X is a It-base 

of a continuous function f : X -4. Y u the point x E X if for every V E Af(f (x) ) ,  
x s c l (O{U E v:  f ( u )  c v } ) ;  

7rx( f , x  ) = rain {IVl: v is a ~r-base of f at x};  

and the 7r-character of f is ~ x ( f )  = sup{wx(f, x): x E X}.  Notice that hd(X) ~< w ( X )  
and if f : X -4 Y is continuous, then ~rX(f) <<. x ( Y ) .  If X = ]-Le! x i  and K c_ I ,  then 
7ru : l-Lel x~ -:, [ I , e K  x{  will denote the projection mapping. 

Theorem 4.5 (Arkhangel'skii factofization theorem [3]). Let X = [ L e t  x i  and let A 
be a dense subset o f  X = I] ie l  X~. I f  f : A --> Y is a continuous funetion and "7 is a 
cardinal number such that 

( I )  hd(Trr(A)) ~< 7 f o r  all K E [I]<~'~" 
(2) there is a dense subset D of  A such that ~rx(f , x )  <~ 7 f o r  every x E D, rhea there 

is L ~ [l]-<'v and a continuous f im ction (5 : ~r L ( A ) -+ Y for  which (5 o 1¢ L = f . 

CoroUary 4.6. Let X = [ I i e t . ¥ i  such that w (X i )  <~ ? <~ III for  all i • I.  l f  A is ,~ 
dense subset o f  X and f : A -+ Y is a continuous function with x ( Y )  <~ "Y, then there are 
L C_ I such that ILl ~< ff and a continuous function dp:~rL (A) --+ Y such that ~bo ~rL = f .  
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Proof. For each K c_ I with IKI <~ 7, we have that w ( I ] i ¢ K X ,  ) ~< 3' and hence, 
hd(rrK(A)) ~< 7. The conclusion now follows from the fact that X(Y)  <<. 3", 7rx(f) <~ 3" 
and Factorization Theorem 4.5. [] 

From Corollary 4.6, we obtain the next generalization of  Lemma 4 from [14]. For 

a / >  ~v, we say that Y _c l-Le~ x~ is a-dense if ~.~(Y) = YIie~ x i  for all J E [I]~<a. 

L e m m a  4.7. Let a be a cardinal and let X = ~ I ~  X i  be a product o f  compact spaces 
o f  weight not bigger than ce with a <~ I/'[. Then, for  a dense subset Y o f  X the following 
are equivalent. 

( l )  Y is a-pseudocompact; 
(2) Y is C~-eompact in X ;  
(3) Y is c~-dense in X .  

Proof. (1) -~- (2). This is evident. 

(2) ~ (3). Let J E [I]~<~. Then ~r.t(Y) is dense and C,-compact  in I L ~ t x ~ .  
Since w(~L~.~ Xi) ~< c~, by Theorem 1.2(6), r r j (Y) must be compact and so 7r.t(Y) = 

H~J x~. 
(3) ~ (11. Let f : Y  -~ ~ a  be a continuous function. By Corollary 4.6, there are 

J E [I]~'~ and a continuous function ~ : ~r~(Y) -~ l~ ~ such that ~bo~'.t - f .  The function 
is continuous on the compact space ~rj(Y) = ~Le.,, x i ,  so f ( Y )  is compact. [] 

By using filters, we may generalize the concept of  ~-product  as follows: 

Definition 4.8. Let u be a cardinal, .~" a filter on a ,  X = 1-1~<~ x~ and z E X.  Then we 
define the ~:~-product of  X based at z by ~ : ~ ( z )  = {:r E X:  {~ < c~: x~ = z~ } E ~} .  

It is not hard to see that i f .T  is a filter on t~, then Y'~-(z) = n { ~ p ( z ) :  p E ~ (a )  and 
.~" c p}, for every z E l'I~<,~ X~. We have that if 7 ~< ct, then ~ . ~ ( a ) ( z )  = ~.~(z) ,  
where ~ 7 ( z )  -- {:c E X:  I{~ < or: a:~ ~ z~} I < 7} is the original definition of  the ~ -  
product based at z E X = I](<c~ X~. Hence, for every filter .T" on a with ~-7(a) c b e', 
we obtain that ~ . r ( z )  C ~ ( z )  for every z E He<,~ X~. Notice that if to ~< a ~< 7, 
then the ~.r-product of [ L e t  x~ is a-dense. 

L e m m a  4.9. Let ~F be a filter on c~, let X = I~<<~ X¢ be a product o f  spaces having 
more than one point and let z E l'I~<, X~. Thea ~ ( z )  is a dense (proper) subset o f  
X if  and only i f  Jr , (a)  C j r  

Proof. Necessity. Assume that there is A c .,'r~,(a) \ ~r. Put a \ A = {~: i < m}.  Then, 
we have that B \ A ~ ~ for all B E .~", Let V = n i< ,n  ~r<, I (vi) ,  where V/is a nonempty 
open subset of  X<, such that z~, ~ V/ for every i < m < a~. By assumption, there is 
z E V N y~'~-(z). Since {~ < a:  z~ = z~} E .T', we can find k < rn so that z ~  = z ~ ,  
but this is impossible because x ~  E V~. and z~  ~ Vk. 
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Sufficiency. Let V = N j<~  ~r~l(Vj), where ~j < c~ and V j ¢  0 is an open subset of  
X ~  for every j < n < o;. Since ~ '~(a)  c_ ~ ,  A = t~ \ {~j: j < n} E ~ .  It the'~ follows 
that V M ~ - ( z )  # 0. El 

We turn now to the principal result concerning ~ . r -p roduc t s .  

Theorem 4.10. Let X = ~I~<,~ X~ be a product o f  compact spaces having more than 
one point and w(X~)  <~ 7 <~ a for  all ~ < c~. Let z E X and let 3: be a filter on ct such 
that snp{t~ < a :  ~',~(a) C_ ~ }  = 3'. Then, the following are equivalent: 

(1) t¢ < 7; 
(2) ~ . r ( z )  is tc-pseudocompact; 
(3) ~ . ~ ( z )  is C~-compact in X .  

in order to prove Theorem 4.10 we need the following lemmas. 

Lernrna 4.11. Let a be an tmconntab!e cardinal. ~a < 3, ~< a ,  X = n ~ < ~  X~ a product 
o f  compact spaces having more than one point and z E X .  I f  w(X~)  <~ 3, for  all ~ < a. 
then 

(1) ~ .~(z)  is ~-pseudocomiJct for  all w <~ t¢ < ff and it is not ~-pseudocompact. 
and 

(2) /f.~" is a filter on a with .~.y(a) c_ ~ ,  then ~ : r ( z )  is n-pseudocompaa for  all 
~v <~ e: < % and i f ' , /E .7 r, then 3' ~< P(ff'~.~(z)) +. 

Proof .  ( t )  In virtue o f  Corollary 10.7(h) o f  [121,/~(~-~.~(z)) = X .  Let a: ~< t~ < 7- We 
have that the space ~-~.~ (z) is a dense subset of X and for each K E [I] -< ~, ~rh-(~.~ (z)) = 
I ' I~ t c  X~. By Lemma 4.7, S"~..~(z) is t~-pseudocompact. Now, for each ~ < 7 choose 
x~ E X~ \ z~. Since w(X~)  <~ 7 for all ~ < 3,, then G = n~<.y a ' -~(x¢) is a G.t-set in 
X which does not meet ~"~.r(z). Thus, ~'~.~(z) is not "y-psendocompact. 

(2) Since ~ .~(z )  C ~ . r . ( z ) ,  by clause (1), ~ . y ( z )  is t~-pseudocompact for  all w ~< t~ < 
7. Assume that ' - /~ ,x" and that p ( ~ y ( z ) )  < or. Let 3' < t¢ < a and let j : l'I~<,~ x ~  --+ 
[0, !] '~ be an embedding. First, observe that G = {A C ~: A E 3 z} is a filter on t~. Then 
~r~[~-~z=(z)] = ~ a ( y ) ,  where y = ~-~(z). It follows from Lemma 4.9 that ~ ¢ ( y )  is not 
compact  since .,x'.~(t~) C_ ~/. Hence, J [~9(Y)]  is not compact  in [0, 1] '~. So, ~ . ¢ ( z )  is not 
~-psendocompact.  Therefore, 3' ~< P ( ~ - ) ( z )  +. t3 

L e n u n a  4,12. Let X = [I~<o X~ he a product o f  compact spaces having more than one 
point and weight <~ 7 <<- ct. Let z = (z~)~<a ~ X and let p be an ultrafilter on a such 
that sup{t~ < a :  ,~",~(a) C p} = 3'. Then, the following are equivalent: 

(I)  ~ < 7; 
(2) ~'~p( z ) is t~-pseudocompact; 
(3) ~-'~.p(z) is C~-compact in X .  

Proof .  (1) =:~ (2) is a consequence of Lemma 4.11 and (2) =*- (3) is evident. We only 
need to prove (3) implies (1). By hypothesis, .~".~+(a) is not contained in p. Choose 
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F C 3r,~+ (~) \ p. Since F E .~',v+ (cQ and p is an uhrafiRer, [c~ \ FI ~< ~ and ~ \ F E p. 
For each ~ c c~ \ F ,  let x~ c X~ \ {z~}. The set G = n{~r~-I(x~): ~ E ~ \ F}  is a 
G'~-set in X which does not intersect Y'~.p(z). It follows from Theorem 1.2 that ~ p ( z )  
is not C,~-compact in X.  El 

Proof  of  Theorem 4.10. We only have to prove (3) =~ (1). Let A E 3r-~+ (a)  \ ~ .  Choose 
an ultrafilter p on a such that .~- C p and A C ~',~+ (a)  \ p .  Now, by Lemma 4.11, we 
obtain that ~ v ( z )  is not C~,-compact in X .  Let f : X  --+ ~ be a continuous function 
such that fD-~p(z)t is not compact. Since )-:~y(z) is dense in )"~p(z), f[Y~y(z)] is not 
compact. So, ~ y ( z )  is not C~-compact in X .  

Corollary 4.13. Let a be a cardinal. Then. 

(1) i f 7  < c~, then ~c~ contab~s a pseudocompaet subspace Y such that p (Y)  = "y; 

(2) i f  c~ is a limit, then ~a contains a pseudocompact sabspaee Y such that p (Y)  = ~; 

(3) i f  c~ is not a limit, then there is not a pseudocompact subspace Y o f  R ~ with 

p(Y)  = a. 

it follows from Corollary 4.13(2) that there is a noncompact, pseudocompact space X 
with p (X)  = w(X) .  

We recall for the reader that a filter 3 e on a cardinal number o~ is said to be "y-complete, 

for 3' ~< r~, if n~<,~ A~ E .~" whenever A~ E ~t- for every ~ < ~ and ,~ < 7. Notice that a 
filter .x- is not ~vl-complete iff there is {A,,: n < ~v} c_ .~ such that n~<,~ An = 0 and 
An+t c_ An for every n < ~v, 

Theorem 4.14. Let c~ be an uncountable cardinal a:',d let X = I'I~<~ X~ be a product 

o f  spaces having more than one point and z E X.  I f  3 e is a filter on a which is not 

o:l-complete, then ~'~,a:(z) cannot be countably compact. 

Proof. Fix r ~ X such that r~ # z~ for all ~ < o~. For each n < ~ define y~ E ~ ( z )  
by ~ ;  = z¢ i f ~  ~ An and yn = re otherwise. Suppose that {Vn: n < o,,} has an 
accumulation point in ~ .~ ( z ) ,  say ~. Set A = {~ < a: V~ = z¢}. Then, A ~ .x-. Pick 

E A and let V be an open subset of  X¢ with z¢ E V and rc ~ V. Let m < ~v be such 
that ( 6 A~.  Then, yn ~ ~ ' ~ ( V )  for every m < n < ~v. but this is a contradiction. 

Let to < ~, < ct, let X = l-[~<~ X~ he a product of compact spaces having more than 
one point, w(X~) <~ 7 for each ~ < a and z ~ X.  If ~ '  is a filter on a satisfying the 
conditions of  Theorem 4.14 and ~',~(~) _ ~ ,  then ~-~-(z) is a ~,-pseudocompact space 
that is not countably compact. A very interesting question that remains unsolved is the 
following. 

Question 4.15 (I". Retta [29]). For u; < a. are there a-pseudocompact spaces X and Y 

such that X x Y is not pseudocompact? ~ 

3This question has been answered in the negatively by S. Gareia-Ferreira, M. Sanchis and S. Watson. 
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